People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ahmadi, Masoud
ASML (Netherlands)
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Analytical modelling of the electrical conductivity of CNT-filled polymer nanocompositescitations
- 2024Modelling piezoresistive behaviour in finitely deformed elastomeric composites
- 2022Outstanding cracking resistance in Mg-alloyed zinc coatings achieved via crystallographic texture controlcitations
- 2022The effect of grain refinement on the deformation and cracking resistance in Zn–Al–Mg coatingscitations
- 2021Cracking behavior and formability of Zn-Al-Mg coatingscitations
- 2021Cracking behavior and formability of Zn-Al-Mg coatings:Understanding the influence of steel substratescitations
- 2020Genesis and mechanism of microstructural scale deformation and cracking in ZnAlMg coatingscitations
- 2019Microstructure and adhesion strength quantification of PVD bi-layered ZnMg-Zn coatings on DP800 steelcitations
Places of action
Organizations | Location | People |
---|
article
Microstructure and adhesion strength quantification of PVD bi-layered ZnMg-Zn coatings on DP800 steel
Abstract
<p>In this study, ZnMg-Zn bi-layered coatings with different Mg contents, a single layer ZnMg coating and a pure zinc coating are deposited on steel substrates by physical vapor deposition (PVD) process. A set of experiments and simulations are performed to study the microstructure, mechanical properties and adhesion behavior of the PVD coatings. It is found that Mg2Zn11 and MgZn2 form in the microstructure of the ZnMg top layer with increasing Mg content. MgZn2 fully covers the microstructure at 14.1 wt% Mg. Scratch tests are carried out to quantify the adhesion strength of the coatings. It is observed that ZnMg single layer coating shows poor adhesion to the steel substrate and the addition of a Zn interlayer is essential for enhancing the adhesion strength. It was found that the measured critical load (L-C) in scratch test is not a suitable criterion to evaluate the adhesion strength of ZnMg-Zn bi-layer coatings with different combination of thickness and/or mechanical properties. Instead, the Benjamin-Weaver model is modified to quantify the adhesion strength at ZnMg/Zn interface by scratch test revealing consistent results with the BMW crash adhesion test (BMW AA-M223) currently used in industry for adhesion qualification.</p>