People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moskovkin, Pavel
University of Namur
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Vein pattern vs. columnar fracture shape in Cu-Zr thin film metallic glassescitations
- 2023Finite Element Mesh Generation for Nano-scale Modeling of Tilted Columnar Thin Films for Numerical Simulationcitations
- 2023Vein pattern vs. columnar fracture shape in Cu-Zr thin film metallic glasses:Driving force and mechanismcitations
- 2021Understanding the role of energetic particles during the growth of TiO2 thin films by reactive magnetron sputtering through multi-scale Monte Carlo simulations and experimental depositioncitations
- 2021Understanding the role of energetic particles during the growth of TiO2 thin films by reactive magnetron sputtering through multi-scale Monte Carlo simulations and experimental depositioncitations
- 2021On the relationship between the plasma characteristics, the microstructure and the optical properties of reactively sputtered TiO2 thin filmscitations
- 2019Correlation of structural and optical properties using virtual materials analysiscitations
- 2018Can the normalized energy flux at the substrate control the microstructure of reactively sputtered TiO2 thin films ?
- 2018Wide range investigation of duty cycle and frequency effects on bipolar magnetron sputtering of chromium nitridecitations
- 2018TiOx deposited by magnetron sputtering: a joint modelling and experimental studycitations
- 2015Multiscale simulations of the early stages of the growth of graphene on coppercitations
- 2014On the formation of the porous structure in nanostructured a-Si coatings deposited by dc magnetron sputtering at oblique anglescitations
- 2010Surface phenomena involved in the formation of Co nanoparticles on amorphous Carbon and SiO2 deposited by magnetron sputteringcitations
- 2007Model predictions and experimental characterization of Co-Pt alloy clusterscitations
Places of action
Organizations | Location | People |
---|
article
Wide range investigation of duty cycle and frequency effects on bipolar magnetron sputtering of chromium nitride
Abstract
Among the different techniques of reactive sputtering, the bipolar and high power impulse magnetron sputtering are growing in interest for the thin films research community. However, the combination of both processes in presence of a reactive atmosphere is extremely complex and the role of the sputtering parameters are key points to control the deposited material properties. In this study, we have investigated the effect of the duty cycle and the pulse frequency on the reactive bipolar sputtering efficiency of chromium in presence of nitrogen. The study has been performed on a wide range of parameters: from 12.5 to 87.5% for the duty cycle, and from 62.5 to 5000 Hz for the frequency. In situ measurements of the magnetron discharge characteristics have been performed (excitation temperature, peak target current and voltage, energy influx at substrate position) in addition to ex situ characterizations of the deposited thin films (structure, microstructure, density, composition, optical and mechanical properties). It appears that the modulation of the duty cycle allows a better control of the mechanical properties due to higher ionization level at the target, while the frequency is better adapted to tune the optical properties that are attributed to a change of texturation and density of the deposited film (confirmed by simulation). All films present a similar microstructure due to the absence of bias applied to the substrate during the deposition process, which leads to a similar energy per atom of deposited species.