People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kamat, Amar M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Piezoresistive 3D graphene-PDMS spongy pressure sensors for IoT enabled wearables and smart productscitations
- 20213D Printed Graphene-Coated Flexible Lattice as Piezoresistive Pressure Sensorcitations
- 2021Optimizing harbor seal whisker morphology for developing 3D-printed flow sensorcitations
- 2021Optimizing harbor seal whisker morphology for developing 3D-printed flow sensorcitations
- 2021Biomimetic Soft Polymer Microstructures and Piezoresistive Graphene MEMS Sensors using Sacrificial Metal 3D Printingcitations
- 2021Fabrication of polymeric microstructures
- 2021Bioinspired PDMS-graphene cantilever flow sensors using 3D printing and replica mouldingcitations
- 2021Bioinspired PDMS-graphene cantilever flow sensors using 3D printing and replica mouldingcitations
- 2020PDMS Flow Sensors With Graphene Piezoresistors Using 3D Printing and Soft Lithographycitations
- 2019Bioinspired Cilia Sensors with Graphene Sensing Elements Fabricated Using 3D Printing and Castingcitations
- 2019Fish-inspired flow sensing for biomedical applications
- 2019Laser-Sustained Plasma (LSP) Nitriding of Titanium: A Reviewcitations
- 2019Laser-sustained plasma (LSP) nitriding of titanium:A reviewcitations
- 2017A two-step laser-sustained plasma nitriding process for deep-case hardening of commercially pure titaniumcitations
- 2017Enhancement of CP-titanum wear resistance using a two-step CO2 laser-sustained plasma nitriding processcitations
- 2016Effect of CO 2 Laser-Sustained Nitrogen Plasma on Heat and Mass Transfer During Laser-Nitriding of Commercially-Pure Titaniumcitations
Places of action
Organizations | Location | People |
---|
article
A two-step laser-sustained plasma nitriding process for deep-case hardening of commercially pure titanium
Abstract
<p>A two-step, laser-sustained plasma (LSP) process was developed to form deep, hard, nitrided cases on commercially pure titanium. A laser-sustained plasma is plasma generated in a gaseous atmosphere that can be sustained indefinitely by the laser beam away from any potentially interacting surface. The first step utilized a nitrogen LSP associated with a defocused CO<sub>2</sub> laser beam in pure nitrogen gas flow to melt and nitride the titanium surface. The second step used an argon LSP to remelt and refine the nitrided layer. Twenty experimental cases with varying nitriding and remelting speeds were studied. Optical and scanning electron microscopy, energy dispersive spectroscopy, optical profilometry, and x-ray diffraction were used to characterize the remelted nitrided layer. An analytical moving heat source solution was used to model the heat transfer in the melt pool during the nitriding and remelting processes. The mass flux of nitrogen into the melt pool and the efficiency of nitrogen intake were estimated. The remelting treatment was found to eliminate the surface cracks formed during nitriding, decrease the surface roughness of the nitrided trail, homogenize the hardened surface layer, and refine the microstructure. The microstructures and hardness of the nitrided layers could be tailored by changing the combination of LSP nitriding and remelting scan speeds. Case depths of up to 0.8 mm and average case hardness values in the range of 475–729 HV<sub>0.3</sub> were achieved in this study.</p>