Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ng, C. H.

  • Google
  • 1
  • 4
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017NiTi shape memory alloy with enhanced wear performance by laser selective area nitriding for orthopaedic applications24citations

Places of action

Chart of shared publication
Mann, H. C.
1 / 1 shared
Chan, C. W.
1 / 2 shared
Lawrence, Jonathan
1 / 92 shared
Waugh, D. G.
1 / 6 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Mann, H. C.
  • Chan, C. W.
  • Lawrence, Jonathan
  • Waugh, D. G.
OrganizationsLocationPeople

article

NiTi shape memory alloy with enhanced wear performance by laser selective area nitriding for orthopaedic applications

  • Mann, H. C.
  • Chan, C. W.
  • Ng, C. H.
  • Lawrence, Jonathan
  • Waugh, D. G.
Abstract

In recent years, near-equiatomic NiTi alloy has been identified as a sound alternative to replace the conventional Ti6Al4V alloy as the next generation orthopaedic biomaterial because of its lower young modulus and unique shape memory effect. The potential problem of using NiTi alloy is the generation of Ni-rich debris when wear occurs. Surface treatment is therefore needed to improve the wear resistance in order to alleviate the impact of the wear. This paper details the surface treatment of NiTi by laser selective area nitriding for enhancing the wear resistance. This was done by a systematic two-step optimization approach: (1) selecting the appropriate set of laser parameters with an L9 Taguchi experiment to optimize the nitride properties and (2) identifying the optimized surface coverage ratio to maximize the wear resistance. The microstructure and surface profiles of the optimized nitride surface was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), and 3-D profile measurement, respectively. The wear resistance of nitrided surfaces with different coverage ratios were then evaluated using reciprocating wear testing against ultra-high-molecular-weight polyethylene (UHMWPE) in simulated body fluid, i.e., Hanks' solution.

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • scanning electron microscopy
  • x-ray diffraction
  • experiment
  • wear resistance
  • nitride