People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moh, Sarfraz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Nanostructured ZnO films prepared by hydro-thermal chemical deposition and microwave-activated reactive sputtering
Abstract
Nanostructured, highly porous, films of zinc oxide have been prepared by hydro-thermal chemical deposition and by microwave-activated reactive sputtering for applications in sensors and solar cells. Scanning electron microscopy, X-ray diffraction, optical constant measurements, and Raman spectroscopy are presented demonstrating the pronounced effect of microwave power on the nanostructure of films prepared by microwave-activated reactive sputtering and the marked differences between films grown by the two methods. While the structures obtained by hydro-thermal chemical deposition are highly crystalline and grow as nanorods, the microwave-activated reactive sputtering films are initially dense with subsequent increase in porosity, leading to unusual cylindrical structures with hemi-spherical caps.