Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Johansen, Villads Egede

  • Google
  • 1
  • 6
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Appearance of anodised aluminium: Effect of alloy composition and prior surface finish31citations

Places of action

Chart of shared publication
Engberg, Sara Lena Josefin
1 / 29 shared
Aggerbeck, Martin
1 / 5 shared
Canulescu, Stela
1 / 57 shared
Dirscherl, Kai
1 / 9 shared
Ambat, Rajan
1 / 142 shared
Schou, Jørgen
1 / 83 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Engberg, Sara Lena Josefin
  • Aggerbeck, Martin
  • Canulescu, Stela
  • Dirscherl, Kai
  • Ambat, Rajan
  • Schou, Jørgen
OrganizationsLocationPeople

article

Appearance of anodised aluminium: Effect of alloy composition and prior surface finish

  • Engberg, Sara Lena Josefin
  • Johansen, Villads Egede
  • Aggerbeck, Martin
  • Canulescu, Stela
  • Dirscherl, Kai
  • Ambat, Rajan
  • Schou, Jørgen
Abstract

Effect of alloy composition and prior surface finish on the optical appearance of the anodised layer on aluminium alloys was investigated. Four commercial alloys namely AA1050, Peraluman 706, AA5754, and AA6082 were used for the investigation. Microstructure and surface morphology of the substrate prior to anodising were analysed using scanning electron microscopy and atomic force microscopy. The optical appearance of the anodised surface with and without sealing was investigated using a photography setup, photospectrometry and bidirectional reflectance distribution function. It was found that the roughness of the as-etched surface increases with the degree of alloying due to second phase particles making the reflection more diffused, and that the as-etched surface morphology is similar to the oxide–substrate interface after anodising. Proper polishing is achieved on hard alloys and the glossy appearance was kept for alloys of high purity. Sealing made the specular reflection of the mechanically polished specimens more distinct.

Topics
  • impedance spectroscopy
  • microstructure
  • morphology
  • surface
  • phase
  • scanning electron microscopy
  • atomic force microscopy
  • aluminium
  • aluminium alloy
  • etching
  • alloy composition
  • polishing