People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Roy, Sudipta
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Influence of corrosion reactions on the pulse electrodeposition of metals and alloyscitations
- 2022Modelling the scaling-up of the nickel electroforming processcitations
- 2022Characteristics of anode materials for nickel electroformingcitations
- 2021Pulse electrodeposition of copper in the presence of a corrosion reactioncitations
- 2020Effect of water on the electrodeposition of copper from a deep eutectic solventcitations
- 2019Investigation of water absorption profile of mineral wool insulation
- 2019Electrodeposition of Fe-Sn from the chloride-based electrolytecitations
- 2019Electroforming of large scale nickel structures for leading-edge energy, aerospace and marine applications
- 2018Anodic reactions and the corrosion of copper in deep eutectic solventscitations
- 2018Pt-Ni Subsurface Alloy Catalystscitations
- 2018Electrodeposition of Cu from a water-containing deep eutectic solvent
- 2018Design of an ultrasonic tank reactor for copper deposition at electrodes separated by a narrow gapcitations
- 2017The influence of water on the cathodic voltammetric responses of choline chloride-urea and choline chloride-ethylene glycol deep eutectic solvents
- 2017Pulse plating of copper from deep eutectic solventscitations
- 2017Electrodeposition of copper from deep eutectic solvents by using pulse current
- 2017Effect of water on Cu electrodeposition from ethaline based deep eutectic solvent
- 2017Effect of water on Cu electrodeposition from ethaline based deep eutectic solvent
- 2016Metal recovery from low concentration solutions using a flow-by reactor under galvanostatic approachcitations
- 2016Sono-electrodeposition transfer of micro-scale copper patterns on to A7 substrates using a mask-less methodcitations
- 2015A soluble molecular variant of the semiconducting silicondiselenidecitations
- 2015The role of fluorosurfactant on Cu-Sn electrodeposition from methanesulfonic acidcitations
- 2015Codeposition of Cu-Sn from ethaline deep eutectic solventcitations
- 2014Effect of ultrasound on mass transfer during electrodeposition for electrodes separated by a narrow gapcitations
- 2014Electrochemical copper deposition from an ethaline-CuCl2·2H2O DEScitations
- 2012Pulse Plating
Places of action
Organizations | Location | People |
---|
article
Electrochemical copper deposition from an ethaline-CuCl2·2H2O DES
Abstract
<p>Cu electroplating was carried out using a pure ethaline melt, a 1:2 ratio of choline chloride and ethylene glycol, at room temperature by potentiostatic and galvanostatic methods. Hydrated cupric chloride was added to the pure ethaline melt. Polarisation data for cupric ion reduction to copper was collected using an RDE to determine where metal deposition was feasible. Smooth Cu deposits were obtained at -4.7×10<sup>-3</sup>A/cm<sup>2</sup> using 0.2M CuCl<sub>2</sub>·2H<sub>2</sub>O at 25°C at a current efficiency of (95±5)% at a rotation speed of 700rpm. XRD analysis of the deposit showed a polycrystalline face centred cubic structure with (111) texture. The crystalline size was 66±10nm with some internal strain. EDX analysis showed the presence of carbon and chlorine with copper in the deposit, which was due to the break-down of the DES. Several deposition processes were carried out from a single bath to examine bath stability. The bath was found to be stable when a soluble anode was employed, and became unstable when an insoluble anode was used due to other reactions proceeding at the cathode.</p>