People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mills, Douglas J.
University of Northampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2017Advances in corrosion protection by organic coatings: what we know and what we would like to knowcitations
- 2016The application of organic coatings in conservation of archaeological objects excavated from the seacitations
- 2016Analysis of electrochemical noise measurement on an organically coated metalcitations
- 2014Steel surface preparation prior to painting and its impact on protective performance of organic coatingcitations
- 2014Effect of hardener variation on protective properties of polyurethane coatingcitations
- 2012Investigation into the effect of nano-silica on the protective properties of polyurethane coatingscitations
- 2011Investigation of morphological and electrical properties of the PMMA coating upon exposure to UV irradiation based on AFM studiescitations
- 2010Effect of different surface preparations prior to painting on the corrosion behaviour and surface activity of mild steel
- 2010The influence of UV light on performance of poly(methyl methacrylate) in regard to dye-sensitised solar cellscitations
- 2010Use of electrochemical methods to examine different surface preparation methods for organic coatings on steelcitations
- 2010Electrochemical characterization of mild steel after different surface preparations
- 2008Using novel electrochemical test methods to aid in the development of low volatile organic compound (VOC) coatings
- 2008Continuing work to enable electrochemical methods to be used to monitor the performance of organic coatings in the fieldcitations
- 2007MPs and lords learn something about corrosion!
- 2001A comparison between conventional macroscopic and microscopic scanning electrochemical methods to evaluate galvanic corrosioncitations
Places of action
Organizations | Location | People |
---|
article
Investigation into the effect of nano-silica on the protective properties of polyurethane coatings
Abstract
The effect of nano-silica particles on the protective properties of polyurethane (PU) coatings has been investigated. Current PU clear coats have shown promising scratch, abrasion and UV resistance properties, however their corrosion resistance has not been much investigated. This study focuses on the effect of non-polar nano-silica particles on electrochemical properties of 2-pack polyurethane matrix. Nano silica was incorporated at different levels into acrylic polyol/HDI polyisocyanate polyurethane matrix and cured at three different temperatures (20 °C, 70 °C and 110 °C). DC resistance technique and Electrochemical Impedance Spectroscopy (EIS) have been employed to evaluate protective properties. Free films were prepared to determine the water-uptake using coating capacitance function measured in the early stages of exposure. Also the effect of nanoparticles on cross-linking density and glass transition temperature (Tg) was investigated by Dynamical Mechanical Thermal Analysis (DMTA) technique. Abrasion resistance was evaluated using Taber abrasion tester by measuring the weight loss from a coated panel. Electrochemical results showed a positive effect on the permeability properties for PU coatings with 5% of embedded nano-silica particles. Also coatings cured at higher temperatures showed improved protective properties. The Tg also increased with elevated curing temperature which was attributed to an increase in cross-linking density. The Taber abrasion test indicates that both, nano-silica particles and higher curing temperatures enhance abrasion resistance.