People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wilson, J. C. Avelar-Batista
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2014Evaluating the effects of PIRAC nitrogen-diffusion treatments on the mechanical performance of Ti-6Al-4V alloycitations
- 2012Impact wear resistance of plasma diffusion treated and duplex treated/PVD-coated Ti-6Al-4V alloycitations
- 2012Surface modification of Ti-6Al-4V alloys using triode plasma oxidation treatmentscitations
- 2012Micro-abrasion wear testing of triode plasma diffusion and duplex treated Ti-6Al-4V alloycitations
- 2012An investigation into the tribological performance of Physical Vapour Deposition (PVD) coatings on high thermal conductivity Cu-alloy substrates and the effect of an intermediate electroless Ni-P layer prior to PVD treatmentcitations
- 2011An investigation into the effect of Triode Plasma Oxidation (TPO) on the tribological properties of Ti6Al4Vcitations
- 2011Evaluating the effects of plasma diffusion processing and duplex diffusion/PVD-coating on the fatigue performance of Ti-6Al-4V alloycitations
Places of action
Organizations | Location | People |
---|
article
Impact wear resistance of plasma diffusion treated and duplex treated/PVD-coated Ti-6Al-4V alloy
Abstract
<p>In this paper dynamic ball-on-plate impact wear testing is utilised to evaluate the intrinsic fatigue strength of the surface of triode plasma diffusion treated, single-layered TiN-, CrAlN-, and WC/C-coated and duplex diffusion treated/PVD-coated Ti-6Al-4V. The test is used to assess the resistance of surfaces to dynamic, high-cycle loading caused by the repeated impact of a cemented carbide ball. The subsequent observation and comparison of the wear craters produced (and their measured volumes) was used to identify which diffusion treatment (or treatment/coating combination) provided the most marked reduction in contact-induced deformation and overall improvement in wear behaviour. A combination of nanoindentation, Knoop hardness microindentation, scratch adhesion, stylus profilometry, optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and atomic force microscopy test and evaluation methods, was used to characterise the surfaces under investigation. Experimental results revealed that triode plasma diffusion treatments can provide exceptional improvements in the impact fatigue resistance, particularly when the diffusion process has been designed to maximise the resultant hardened case depth. Also, amongst the three coatings tested, PVD CrAlN was found to be the most suitable for applications involving such dynamic impact loading. Finally, the results presented show that an appropriate sequential triode plasma oxidation and nitriding diffusion pretreatment, in combination with a hard and tough PVD ceramic coating, can provide a significant reduction in surface impact wear when compared to either plasma diffusion treatments alone, or PVD ceramic coatings deposited on non-pretreated Ti-alloy substrates.</p>