People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marques, Mj
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022Comparative Study of the Wear Behavior of B4C Monolayered and CrN/CrCN/DLC Multilayered Physical Vapor Deposition Coatings Under High Contact Loads: An Experimental Analysiscitations
- 2022Quantification of Residual Stress Relief by Heat Treatments in Austenitic Cladded Layerscitations
- 2021Rolling and Rolling-Sliding Contact Fatigue Failure Mechanisms in 32 CrMoV 13 Nitrided Steel-An Experimental Studycitations
- 2020Comparison between EDM and grinding machining on fatigue behaviour of AISI D2 tool steelcitations
- 2017Texture characterization of stainless steel cladded layers of process vesselscitations
- 2015Effect of heat treatment on microstructure and residual stress fields of a weld multilayer austenitic steel cladcitations
- 2014Residual Stresses Profiles of Cladded Austenitic Stainless Steel Evaluated by X-Ray Diffraction and by Incremental Hole-Drilling Method
- 2013The Use of Neutron Diffraction for the Determination of the in-Depth Residual Stresses Profile in Weld Coatingscitations
- 2012Evaluation of stress-strain behavior of surface treated steels by X-ray diffractioncitations
- 2012Design and manufacture of a composite bus
- 2012RESIDUAL STRESSES PROFILES OF CLADDED AUSTENITIC STAINLESS STEEL BY INCREMENTAL HOLE DRILLING METHOD
- 2011Residual Stress Fields after Heat Treatment in Cladded Steel of Process Vesselscitations
- 2006Surface integrity of H13 ESR mould steel milled by carbide and CBN toolscitations
- 2005X-ray diffraction characterization of ion-implanted austenitic stainless steelcitations
- 2002Relaxation of residual stresses on the near surface of carbon steel substrates due to plasma cleaning
Places of action
Organizations | Location | People |
---|
article
X-ray diffraction characterization of ion-implanted austenitic stainless steel
Abstract
The effect of ion implantation surface treatment in an austenitic stainless steel, AISI 304, with nitrogen and argon ions is presented in this work. The study concerns phase analysis, crystallographic texture, and in depth residual stress profile characterization by X-ray diffraction. In order to determine the residual stress depth profiles, a combination of the conventional X-ray diffraction technique, with several wavelengths radiation, and the pseudograzing incidence X-ray diffraction are used. Experimental data leads to the conclusion that the ion implantation did not create any new phase and did not influence the crystallographic texture observed before the implantation. However, concerning the residual stresses study, the results show that the initial compression residual stress profile observed in the nonimplanted surface samples changes to a tensile residual stress profile after implantation. A very important residual stress gradient is induced in the implanted surfaces and becomes more significant with the increase of ion beam fluence. In this surface layer, the tensile residual stress average value increases with the total fluence of ion beam. Ar ions seem to increase the residual stress profile more than N ions. The diffraction peak width evolution with depth is similar in nonimplanted and in implanted zones for both types of implanted ions. The peak width is much larger in the first micron of the surface layer, decreasing at a greater depth, reaching the corresponding peak value of the recrystallized material (6000-7000 nm).