People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Janata, Marek
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Measurement system for in-situ estimation of instantaneous corrosion rate in supercritical water
Abstract
Current research of cladding and in-core materials for the supercritical water reactor concept is focused on Fe-Cr-Ni alloys (e.g. 800 H, 310 S). Along the standard measurements of general corrosion rate of materials by exposure testing in autoclaves, where poor reproducibility is an issue, especially when comparing results from different experimental facilities, a good alternative may be the use of in-situ electrochemical measurements. The use of electrochemical methods is, however, more challenging due to complicated instrumentation as well as due to the supercritical water conditions. This paper is focused on the design of an experimental facility for in-situ electrochemical testing at supercritical water conditions, i.e. main circulating loop with autoclave, including the design of the electrode system, electrode leads and their surface insulation coating. Stability of electrochemical measurements has been tested using 2- and 3-electrode set-ups. Finally, surface insulation coating of the electrode leads with the best chemical and mechanical stability during experiment has been chosen for the presented application. © 2023 The Authors