People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Val, Dimitri V.
Heriot-Watt University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Probabilistic approach to the sustainability assessment of reinforced concrete structures in conditions of climate changecitations
- 2012Prediction of cover crack propagation in RC structures caused by corrosioncitations
- 2012Cover cracking in reinforced concrete elements due to corrosioncitations
- 2009Experimental and numerical investigation of corrosion-induced cracking in reinforced concrete structurescitations
- 2009Experimental and numerical investigation of corrosion-induced cover cracking in reinforced concrete structures
Places of action
Organizations | Location | People |
---|
article
Probabilistic approach to the sustainability assessment of reinforced concrete structures in conditions of climate change
Abstract
The paper presents a probabilistic method based on two methodologies – Life Cycle Cost Analysis (LCCA) and Life Cycle Assessment (LCA), for evaluating the sustainability of reinforced concrete (RC) structures in terms of their costs and CO<sub>2</sub> emissions. The method considers the whole life of a RC structure by taking into account CO<sub>2</sub> initially embodied in its construction materials, the absorption of CO<sub>2</sub> by concrete due to carbonation during the service life of the structure, potential damage to the structure due to carbonation-induced corrosion of reinforcing steel that may require repairs, and relevant costs. Since there are numerous uncertainties associated with the calculation of CO<sub>2</sub> emissions and costs, a probabilistic approach is beneficial. The emphasis is made on RC structures made of the so-called “green concretes”, in which Portland cement is partially replaced with supplementary cementitious materials such as fly ash and ground granulated blast-furnace slag. The issue of a changing climate is also addressed. The method is illustrated by assessing the sustainability of a multi-story RC carpark made of different concrete types at three different locations (London, Paris and Marseille) for present and future climate conditions. This assessment's results show that using green concretes leads to a major reduction in CO<sub>2</sub> emissions and a small decrease in the life-cycle cost of the carpark RC elements. The relative sustainability performance of green concretes slightly improves compared to Portland cement concrete for future climate conditions.