People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Colomban, Philippe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024On‐site Raman and XRF study of complex metal patinas and cloisonné enamels From 19th‐century Christofle masterpieces: Technological study of the decoration techniques
- 2023Vibrational Characterization of the Various Forms of (Solvated or Unsolvated) Mobile Proton in the Solid State. Advantages, Limitations and Open Questionscitations
- 2023Influence of the nanocrystallinity on exchange bias in Co/CoO core/shell nanoparticlescitations
- 2023Timurid, Ottoman, Safavid and Qajar Ceramics: Raman and Composition Classification of the Different Types of Glaze and Pigmentscitations
- 202320 Years of on-site Raman Analysis of rare works of arts: Successes, Difficulties and Prospects
- 202220 years of on-site Raman analysis of works of art: successes, difficulties and prospects
- 2021The Technology Transfer from Europe to China in the 17th–18th Centuries: Non-Invasive On-Site XRF and Raman Analyses of Chinese Qing Dynasty Enameled Masterpieces Made Using European Ingredients/Recipescitations
- 2020Chemical Preparation Routes and Lowering the Sintering Temperature of Ceramicscitations
- 2020Glass, pottery and enamelled objects: identification of their technology and origin
- 2018Non-Invasive on-site Raman study of blue-decorated early soft-paste porcelain: the use of Arsenic-rich (European) cobalt ores-Comparison with huafalang Chinese porcelainscitations
- 2018FTIR spectroscopic semi-quantification of iron phases: A new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systemscitations
- 2018On-site Raman study of artwork: Procedure and illustrative examplescitations
- 2015Structural stability of anhydrous proton conducting SrZr0.9Er0.1O3-δ perovskite ceramic vs. protonation/deprotonation cycling: Neutron diffraction and Raman studies☆citations
- 2015Chemical and structural stability of La0.6Sr0.4Co0.2Fe0.8O3−δ ceramic vs. medium/high water vapor pressurecitations
- 2015Water pressure enhanced sintering of alkaline-earth perovskite ceramicscitations
- 2014Protective ability index measurement through Raman quantification imaging to diagnose the conservation state of weathering steel structurescitations
- 2012Raman mapping for the investigation of nanophased materialscitations
- 2012Structural and Electrical Properties of Nanostructured Ba 0.8 Sr 0.2 TiO 3 Films Deposited by Pulsed Laser Deposition
- 2007Raman Spectroscopy of Nanomaterials: How Spectra Relate to Disorder, Particle Size and Mechanical Propertiescitations
- 2005Raman signature modification induced by copper nanoparticles in silicate glass
- 2005Raman signature modification induced by copper nanoparticles in silicate glass
- 2005Raman/Cr3+ Fluorescence Mapping of Melt-Grown Al2O3/GdAlO3 Eutectics
- 2005Phase diagram and Raman Imaging of Grain Growth Mechanisms in Highly Textured Pb(Mg1/3Nb2/3)O3-PbTiO3 Piezoelectric Ceramics
- 2004On Site Raman Analysis of Iznik Pottery Glazes and Pigments
Places of action
Organizations | Location | People |
---|
article
Vibrational Characterization of the Various Forms of (Solvated or Unsolvated) Mobile Proton in the Solid State. Advantages, Limitations and Open Questions
Abstract
International audience ; A didactic review of (Raman, infrared and neutron) vibrational spectroscopy procedures to study mobile protonic species (H2O, H3O+, H5O2+ , "H+" , NH4+, etc.) in solid hydrates, crystals and ceramics is proposed on the basis of paper published since 1970s. Three materials are taken as representative examples: hydrated uranyl phosphate (HUP), oxonium, hydroxonium and ammonium beta-and beta"-aluminas and nominally anhydrous strontium/barium zirconate perovskite. Particular attention is given to the advantages of isotopic substitution and dilution measurements as a function of temperature and partial ion exchange. The vibrational signatures that we consider as being able to serve as references for the different kinds of proton species observed in the proton conductors are presented. We also discuss the signature of protonic species giving no vibrational signature-or whose Raman and infrared signatures are too weak to be clearly detected-that need to be better characterized and understood. The presence of a strong incoherent inelastic neutron scattering background appears characteristic of (mobile) proton conductors.