People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Talic, Belma
SINTEF
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Fracture toughness of reactive bonded Co–Mn and Cu–Mn contact layers after long-term agingcitations
- 2022Protective Coatings for Ferritic Stainless Steel Interconnect Materials in High Temperature Solid Oxide Electrolyser Atmospherescitations
- 2021High toughness well conducting contact layers for solid oxide cell stacks by reactive oxidative bondingcitations
- 2020Comparison of MnCo2O4 coated Crofer 22 H, 441, 430 as interconnects for intermediate-temperature solid oxide fuel cell stackscitations
- 2020Iron doped manganese cobaltite spinel coatings produced by electrophoretic co-deposition on interconnects for solid oxide cells: Microstructural and electrical characterizationcitations
- 2020Iron doped manganese cobaltite spinel coatings produced by electrophoretic co-deposition on interconnects for solid oxide cells: Microstructural and electrical characterizationcitations
- 2020In-situ Fe-doped MnCo spinel coatings on Crofer 22 APU and AISI 441 interconnects: microstructural, electrical and oxidation properties
- 2020Comparison of MnCo 2 O 4 coated Crofer 22 H, 441, 430 as interconnects for intermediate-temperature solid oxide fuel cell stackscitations
- 2020Interface fracture energy of contact layers in a solid oxide cell stackcitations
- 2019Diffusion couple study of the interaction between Cr2O3 and MnCo2O4 doped with Fe and Cucitations
- 2019Diffusion couple study of the interaction between Cr 2 O 3 and MnCo 2 O 4 doped with Fe and Cucitations
- 2019Investigation of electrophoretic deposition as a method for coating complex shaped steel parts in solid oxide cell stackscitations
- 2018Thermal expansion and electrical conductivity of Fe and Cu doped MnCo2O4 spinelcitations
- 2018Thermal expansion and electrical conductivity of Fe and Cu doped MnCo 2 O 4 spinelcitations
- 2018Effect of pre-oxidation on the oxidation resistance of Crofer 22 APUcitations
- 2018Effect of pre-oxidation on the oxidation resistance of Crofer 22 APUcitations
Places of action
Organizations | Location | People |
---|
article
Diffusion couple study of the interaction between Cr2O3 and MnCo2O4 doped with Fe and Cu
Abstract
Manganese cobalt spinel oxides are promising coating materials for the protection of ferritic stainless steel interconnects in solid oxide fuel cell (SOFC) stacks. The interaction between such coatings and the steel is here studied using diffusion couples as a model system. The interaction between MnCo<sub>2</sub>O<sub>4</sub>, MnCo<sub>1.7</sub>Fe<sub>0.3</sub>O<sub>4</sub> and MnCo<sub>1.7</sub>Cu<sub>0.3</sub>O<sub>4</sub> spinels and Cr<sub>2</sub>O<sub>3</sub> was studied in air at 900 °C. In allcases, a reaction layer rich in Co and Cr formed at the interfaces. Using Pt-particles to mark the original interface reveals that the reaction layers grow by diffusion of Co (and Mn) from the spinel oxides to the Cr<sub>2</sub>O<sub>3</sub>/reaction layer interface. The growth of the reaction layers followed parabolic kinetics with rate constants of 1.3×10<sup>−5</sup> μm<sup>2</sup> s<sup>−1</sup> for the MnCo<sub>2</sub>O<sub>4</sub>/Cr<sub>2</sub>O<sub>3</sub> couple, 8.6×10<sup>−6</sup> μm<sup>2</sup> s<sup>−1</sup> for the MnCo<sub>1.7</sub>Fe<sub>0.3</sub>O<sub>4</sub>/Cr<sub>2</sub>O<sub>3</sub> couple, and finally 1.2×10<sup>−4</sup> μm<sup>2</sup> s<sup>−1</sup> for the MnCo<sub>1.7</sub>Cu<sub>0.3</sub>O<sub>4</sub>/Cr<sub>2</sub>O<sub>3</sub> couple.