Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ramos, A. M.

  • Google
  • 1
  • 6
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Preparation and characterization of cellulose nanocomposite hydrogels as functional electrolytes20citations

Places of action

Chart of shared publication
Cidade, Maria Teresa
1 / 21 shared
Pereira, Luis
1 / 54 shared
Pereira, G.
1 / 4 shared
Martins, Rodrigo
1 / 166 shared
Branquinho, Rita
1 / 21 shared
Pereira, S.
1 / 12 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Cidade, Maria Teresa
  • Pereira, Luis
  • Pereira, G.
  • Martins, Rodrigo
  • Branquinho, Rita
  • Pereira, S.
OrganizationsLocationPeople

article

Preparation and characterization of cellulose nanocomposite hydrogels as functional electrolytes

  • Cidade, Maria Teresa
  • Pereira, Luis
  • Pereira, G.
  • Ramos, A. M.
  • Martins, Rodrigo
  • Branquinho, Rita
  • Pereira, S.
Abstract

<p>In this work Laponite was combined with a modified abundant natural polymer, (caboxymethyl cellulose), acrylic sodium salt polymer and lithium perchlorate aiming to produce inexpensive and sustainable nanocomposite electrolytes for functional electrochemical devices. Optical, electrochemical, structural, morphological and rheological characterization was performed in order to evaluate their properties and potential advantages as electrolyte. It was verified that the addition of Laponite led to an ionic conductivity at room temperature (25 C) in the range of 6 to 9 × 10<sup>- 5</sup> Scm <sup>- 1</sup> this value being then determined by the composition of the nanocomposite. These electrolytes were applied to electrochromic devices using evaporated nickel oxide thin film as the electrochromic layer. The devices exhibited a significant transmittance modulation that exceeds 45 % at 600 nm.</p>

Topics
  • nanocomposite
  • polymer
  • nickel
  • thin film
  • Sodium
  • Lithium
  • cellulose