Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pietrzak, Tomasz

  • Google
  • 11
  • 22
  • 253

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2021Towards deeper understanding of multifaceted chemistry of magnesium alkylperoxides3citations
  • 2019Multifold pressure-induced increase of electric conductivity in LiFe<inf>0.75</inf>V<inf>0.10</inf>PO<inf>4</inf> glass12citations
  • 2016Dependence of a glass transition temperature on a heating rate in DTA experiments for glasses containing transition metal oxides13citations
  • 2016Synthesis of nanostructured Li3Me2(PO4)2F3 glass-ceramics (Me = V, Fe, Ti)14citations
  • 2016Nanocrystallisation in vanadate phosphate and lithium iron vanadate phosphate glasses16citations
  • 2015High electronic conductivity in nanostructured materials based on lithium-iron-vanadate-phosphate glasses51citations
  • 2013Isothermal nanocrystallization of vanadate-phosphate glasses12citations
  • 2013Novel vanadium-doped olivine-like nanomaterials with high electronic conductivity28citations
  • 2011Electrical properties and thermal stability of FePO4 glasses and nanomaterials12citations
  • 2011Electrical properties vs. microstructure of nanocrystallized V2O5–P2O5 glasses — An extended temperature range study27citations
  • 2009Correlation between electrical properties and microstructure of nanocrystallized V2O5–P2O5 glasses65citations

Places of action

Chart of shared publication
Justyniak, Iwona
1 / 9 shared
Ochal, Zbigniew
1 / 4 shared
Lewiński, Janusz
1 / 11 shared
Zelga, Karolina
1 / 2 shared
Nowak, Krzysztof
1 / 3 shared
Bockowski, Michał
1 / 2 shared
Starzonek, S.
1 / 5 shared
Drozd-Rzoska, Aleksandra
1 / 3 shared
Baranowski, Piotr
1 / 2 shared
Rzoska, S. J.
1 / 6 shared
Keblinski, Pawel
1 / 2 shared
Garbarczyk, Jerzy
10 / 29 shared
Wasiucionek, Marek
9 / 26 shared
Nowiński, Jan
8 / 19 shared
Michalski, Przemysław Piotr
2 / 2 shared
Dorau, A.
1 / 1 shared
Kaleta, A.
1 / 3 shared
Gorzkowska, Irena
1 / 1 shared
Gierlotka, S.
3 / 14 shared
Gorzkowska, I.
3 / 7 shared
Wewior, L.
1 / 1 shared
Jozwiak, P.
1 / 4 shared
Chart of publication period
2021
2019
2016
2015
2013
2011
2009

Co-Authors (by relevance)

  • Justyniak, Iwona
  • Ochal, Zbigniew
  • Lewiński, Janusz
  • Zelga, Karolina
  • Nowak, Krzysztof
  • Bockowski, Michał
  • Starzonek, S.
  • Drozd-Rzoska, Aleksandra
  • Baranowski, Piotr
  • Rzoska, S. J.
  • Keblinski, Pawel
  • Garbarczyk, Jerzy
  • Wasiucionek, Marek
  • Nowiński, Jan
  • Michalski, Przemysław Piotr
  • Dorau, A.
  • Kaleta, A.
  • Gorzkowska, Irena
  • Gierlotka, S.
  • Gorzkowska, I.
  • Wewior, L.
  • Jozwiak, P.
OrganizationsLocationPeople

article

Novel vanadium-doped olivine-like nanomaterials with high electronic conductivity

  • Wasiucionek, Marek
  • Gorzkowska, Irena
  • Nowiński, Jan
  • Garbarczyk, Jerzy
  • Pietrzak, Tomasz
Abstract

Olivine-like lithium iron phosphate (LiFePO4) is the most studied cathode material for a new generation of commercial Li-ion batteries. In this work we have studied the effect of thermal nanocrystallization on the electronic conductivity of the LiFe0.75V0.10PO4 glasses. The electrical conductivity of the as-prepared glass extrapolated to room temperature was as low as 10- 12 S · cm- 1. An appropriate thermal treatment of the glass led, however, to an immense increase in its electrical conductivity (up to 10- 3 S · cm- 1) and to a decrease in the activation energy from 1.0 eV for a freshly synthesized material to 0.17 eV after heat treatment. In the best conducting sample a large number of 5 ÷ 10 nm nanocrystallites of LiFePO4 were observed by SEM, STEM and HRTEM techniques. We ascribe the immense increase in the conductivity to especially advantageous conditions for polaron hopping between aliovalent iron and/or vanadium ions, created during the thermally induced microstructural changes. No traces of metallic impurities (such e.g., Fe2P) were found, but some presence of an electrochemically active Li3V2(PO4)3 phase was detected by XRD. © 2013 Elsevier B.V. All rights reserved.

Topics
  • impedance spectroscopy
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • glass
  • glass
  • Lithium
  • iron
  • activation
  • electrical conductivity
  • vanadium