Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schönbeck, Christian

  • Google
  • 2
  • 5
  • 21

Roskilde University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Simultaneous determination of cyclodextrin stability constants as a function of pH and temperature – A tool for drug formulation and process design12citations
  • 2013Defect chemistry, thermomechanical and transport properties of (RE2−xSrx)0.98(Fe0.8Co0.2)1−yMgyO4−δ (RE = La, Pr)9citations

Places of action

Chart of shared publication
Samuelsen, Lisa
1 / 1 shared
Holm, René
1 / 17 shared
Chatzichristodoulou, Christodoulos
1 / 37 shared
Hagen, Anke
1 / 30 shared
Hendriksen, Peter Vang
1 / 119 shared
Chart of publication period
2021
2013

Co-Authors (by relevance)

  • Samuelsen, Lisa
  • Holm, René
  • Chatzichristodoulou, Christodoulos
  • Hagen, Anke
  • Hendriksen, Peter Vang
OrganizationsLocationPeople

article

Defect chemistry, thermomechanical and transport properties of (RE2−xSrx)0.98(Fe0.8Co0.2)1−yMgyO4−δ (RE = La, Pr)

  • Chatzichristodoulou, Christodoulos
  • Hagen, Anke
  • Hendriksen, Peter Vang
  • Schönbeck, Christian
Abstract

The oxygen nonstoichiometry of Ruddlesden-Popper compounds with chemical composition (RE2 − xSrx)0.98(Fe0.8Co0.2)1 − yMgyO4 − δ (RE = La, Pr, x = 0.9–1.2 and y = 0, 0.2) was measured as a function of temperature and oxygen activity (aO2) by coulometric titration and thermogravimetry. All compositions were found to be approximately stoichiometric in air (δ ≈ 0). The oxidation state of Fe and Co was determined by XANES. Fe retains an oxidation state of + 3 upon reduction of the sample, whereas Co is reduced to an oxidation state of + 2. A model of the defect chemistry is proposed that can account well for the measured oxygen activity dependence of the oxygen nonstoichiometry at all temperatures investigated. The studied compositions exhibit remarkable thermodynamic stability under reducing conditions. Decomposition was only observed for temperatures above 800 °C in a hydrogen water vapor gas mixture ([H2]/[H2O] = 50). The thermal and chemical expansion coefficients of these compounds are significantly decreased compared to those of (La0.6Sr0.4)0.99Fe0.8Co0.2O3 − δ, a well studied perovskite with related composition. The transport properties were investigated by conductivity relaxation and the potential of using these materials as oxygen separation membranes was assessed by calculating the oxygen flux that can be delivered through a 30 μm thick membrane.

Topics
  • perovskite
  • impedance spectroscopy
  • compound
  • Oxygen
  • Hydrogen
  • chemical composition
  • thermogravimetry
  • defect
  • decomposition
  • titration