Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Taylor, John

  • Google
  • 12
  • 36
  • 506

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2018Freeze cast porous barium titanate for enhanced piezoelectric energy harvesting74citations
  • 2018Corrigendum to “Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of merit” [Acta Mater. 128 (2017) 207–217](S1359645417301209)(10.1016/j.actamat.2017.02.029)2citations
  • 2017Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of merit113citations
  • 2016Inexpensive and fast pathogenic bacteria screening using field-effect transistors37citations
  • 2016Manufacture and characterization of porous ferroelectrics for piezoelectric energy harvesting applications50citations
  • 2014Manufacturing and characterization of Magnéli phase conductive fibres40citations
  • 2013Hot tear susceptibility of Al-Mg-Si alloys with varying iron contents48citations
  • 2012AC electrical properties of TiO2 and Magnéli phases, TinO2n−149citations
  • 2011Impedance spectroscopy analysis of Ti n O 2n-1 Magnéli phases27citations
  • 2011Impedance spectroscopy analysis of TinO2n-1 Magnéli phases27citations
  • 2010Nanostructured electrodes for biocompatible CMOS integrated circuits10citations
  • 2009Formation of a porous alumina electrode as a low-cost CMOS neuronal interface29citations

Places of action

Chart of shared publication
Lewis, R. W. C.
2 / 2 shared
Bowen, Christopher R.
10 / 96 shared
Zhang, Y.
1 / 149 shared
Kraśny, Marcin Jan
1 / 1 shared
Roscow, James
4 / 18 shared
Lewis, Rhodri
1 / 3 shared
Bowen, Christopher
1 / 4 shared
Sarkar, Amrita
1 / 2 shared
Jolly, Pawan
1 / 8 shared
Martinez, Juana Reyes
1 / 1 shared
Heeran, Mel
1 / 2 shared
Formisano, Nello
1 / 3 shared
Flitsch, Sabine
1 / 2 shared
Estrela, Pedro
1 / 17 shared
Laabei, Maisem
1 / 3 shared
Bhalla, Nikhil
1 / 4 shared
Clemens, F.
1 / 24 shared
Ragulis, P.
1 / 1 shared
Pennock, Stephen
3 / 8 shared
Adamaki, V.
2 / 4 shared
Easton, Mark
1 / 9 shared
Couper, Malcolm
1 / 1 shared
Davidson, Cameron
1 / 3 shared
Grandfield, John
1 / 4 shared
Stjohn, David
1 / 4 shared
Sweet, Lisa
1 / 2 shared
Regonini, D.
1 / 3 shared
Dent, A. C. E.
1 / 5 shared
Regonini, Domenico
2 / 2 shared
Dent, Andrew C. E.
2 / 6 shared
Pennock, Stephen R.
1 / 1 shared
Marken, Frank
1 / 91 shared
Robbins, Jon
1 / 1 shared
Graham, Anthony H. D.
2 / 2 shared
Lalev, Georgi
1 / 1 shared
Robbins, J.
1 / 1 shared
Chart of publication period
2018
2017
2016
2014
2013
2012
2011
2010
2009

Co-Authors (by relevance)

  • Lewis, R. W. C.
  • Bowen, Christopher R.
  • Zhang, Y.
  • Kraśny, Marcin Jan
  • Roscow, James
  • Lewis, Rhodri
  • Bowen, Christopher
  • Sarkar, Amrita
  • Jolly, Pawan
  • Martinez, Juana Reyes
  • Heeran, Mel
  • Formisano, Nello
  • Flitsch, Sabine
  • Estrela, Pedro
  • Laabei, Maisem
  • Bhalla, Nikhil
  • Clemens, F.
  • Ragulis, P.
  • Pennock, Stephen
  • Adamaki, V.
  • Easton, Mark
  • Couper, Malcolm
  • Davidson, Cameron
  • Grandfield, John
  • Stjohn, David
  • Sweet, Lisa
  • Regonini, D.
  • Dent, A. C. E.
  • Regonini, Domenico
  • Dent, Andrew C. E.
  • Pennock, Stephen R.
  • Marken, Frank
  • Robbins, Jon
  • Graham, Anthony H. D.
  • Lalev, Georgi
  • Robbins, J.
OrganizationsLocationPeople

article

AC electrical properties of TiO2 and Magnéli phases, TinO2n−1

  • Regonini, D.
  • Bowen, Christopher R.
  • Pennock, Stephen
  • Adamaki, V.
  • Dent, A. C. E.
  • Taylor, John
Abstract

This paper presents a comprehensive impedance spectroscopy comparison of the AC properties of dense stoichiometric TiO2 and conductive TinO2n − 1 Magnéli phases over a broad temperature range (up to 1000 °C for TiO2 and 375 °C for TinO2n − 1). The frequency dependent conductivity and permittivity of both materials is explained in terms of “universal” power law behaviour. A deviation from the law, with a giant relative permittivity which is largely independent of frequency from 0.1 Hz to 100–200 kHz is observed in the case of TinO2n − 1, due to the presence of residual TiO2 generating an Internal Barrier Layer Capacitor (IBLC) effect. The real–imaginary impedance plots are interpreted using an RC model and allow separation of the contribution of the grain bulk and the grain boundaries to the total resistivity of the material. In the case of the TinO2n − 1 based materials this confirms that the IBLC effect is generated by insulating grain boundaries. The conduction mechanism in both TiO2 and TinO2n − 1 appears to be dominated by electronic conductivities, activated mainly through shallow donor levels up to 200 °C and over the entire band gap, which is narrower for TinO2n − 1, above 200 °C. A deeper understanding of the AC properties of Magnéli phases of Ti at different temperatures aids in the optimisation of electrical properties for a variety of sensor and electrical applications.

Topics
  • impedance spectroscopy
  • grain
  • resistivity
  • phase
  • dielectric constant