Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yamaguchi, Shu

  • Google
  • 2
  • 3
  • 193

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2012High capacity positive electrodes for secondary Mg-ion batteries129citations
  • 2012Synthesis and electrochemical behavior of hollandite MnO2/acetylene black composite cathode for secondary Mg-ion batteries64citations

Places of action

Chart of shared publication
Miyayama, Masaru
2 / 7 shared
Rasul, Shahid
2 / 18 shared
Suzuki, Shinya
2 / 2 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Miyayama, Masaru
  • Rasul, Shahid
  • Suzuki, Shinya
OrganizationsLocationPeople

article

Synthesis and electrochemical behavior of hollandite MnO2/acetylene black composite cathode for secondary Mg-ion batteries

  • Miyayama, Masaru
  • Rasul, Shahid
  • Suzuki, Shinya
  • Yamaguchi, Shu
Abstract

<p>In this work, we present tunnel-structured hollandite-type MnO<sub>2</sub> as a reversible insertion cathode material for secondary Mg-ion batteries. Hollandite MnO<sub>2</sub> [Hol] and the hollandite MnO<sub>2</sub>/acetylene black [Hol/AB] composite are synthesized as working electrodes. The reversible insertion/extraction of a Mg ion in an active host lattice in the potential window of - 1.8 to 1.0 V vs. Ag/Ag <sup>+</sup> at a current density of 100 mA/g is examined. In the case of hollandite MnO<sub>2</sub>/acetylene black composite, a specific discharge capacity of 210 mAh/g in the 1st cycle is observed upon the electrochemical insertion of ∼ 0.39 Mg/Mn. However, hollandite MnO<sub>2</sub> exhibits a specific discharge capacity of 85 mAh/g upon the electrochemical insertion of 0.16 Mg/Mn under the same conditions. The tunnel framework of the hollandite MnO<sub>2</sub> is retained with minor displacive adjustments even after substantial Mg-ion insertion/extraction. A reversible loss in capacity with increasing current density appears to be associated with a diffusion-limited transfer of the Mg ion in the solid state.</p>

Topics
  • density
  • impedance spectroscopy
  • extraction
  • composite
  • current density