People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Miyayama, Masaru
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2012High capacity positive electrodes for secondary Mg-ion batteriescitations
- 2012Synthesis and electrochemical behavior of hollandite MnO2/acetylene black composite cathode for secondary Mg-ion batteriescitations
- 2011The diffusions and associated interfacial layer formation between thin film electrolyte and cermet anode in IT-SOFCcitations
- 2011Diffusion and segregation along grain boundary at the electrolyte–anode interface in IT-SOFCcitations
- 2011Mutual diffusion and microstructure evolution at the electrolyte−anode interface in intermediate temperature solid oxide fuel cellcitations
- 2007Cathode performance of nanostructured La1-aSraCo1-bFebO3- on a Ce0.8Sm0.2O2 electrolyte prepared by citrate-nitrate auto-combustioncitations
- 2006Electrode performance of nanostructured La1-aSraCo1-bFebO3-x on a Ce0.8Sm0.2O2 electrolyte prepared by citrate nitrate auto-combustioncitations
Places of action
Organizations | Location | People |
---|
article
Diffusion and segregation along grain boundary at the electrolyte–anode interface in IT-SOFC
Abstract
The atomic level chemical and microstructural features of grain boundaries in gadolinium-doped ceria (GDC) electrolyte thin film supported by Ni–GDC cermet anode were characterized by high resolution transmission electron microscope (HR-TEM) and scanning TEM (STEM). It was found that metallic Ni can diffuse from the anode into the thin film electrolyte along grain boundaries. In addition, Ce and Gd can also diffuse and segregate at grain boundaries between Ni grains in the anode substrate. HR-TEM observations revealed that Ni diffusion and segregation at grain boundaries between GDC grains enhanced the inhomogeneity and led to microstructural changes at grain boundary regions, i.e. the formation of superstructure. The observations also indicated that enhanced inhomogeneity at grain boundaries might play a significant role in the conductivity of GDC electrolyte film in solid oxide fuel cells.