People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wasiucionek, Marek
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2021Towards Higher Electric Conductivity and Wider Phase Stability Range via Nanostructured Glass-Ceramics Processingcitations
- 2019Properties of LiMnBO3 glasses and nanostructured glass-ceramicscitations
- 2016Dependence of a glass transition temperature on a heating rate in DTA experiments for glasses containing transition metal oxidescitations
- 2016Synthesis of nanostructured Li3Me2(PO4)2F3 glass-ceramics (Me = V, Fe, Ti)citations
- 2016Nanocrystallisation in vanadate phosphate and lithium iron vanadate phosphate glassescitations
- 2015High electronic conductivity in nanostructured materials based on lithium-iron-vanadate-phosphate glassescitations
- 2013Isothermal nanocrystallization of vanadate-phosphate glassescitations
- 2013Novel vanadium-doped olivine-like nanomaterials with high electronic conductivitycitations
- 2011DSC and electrical conductivity studies on superionic all-glass phosphate-based composites
- 2011Electrical properties of the all-glass composite silver ion conductorscitations
- 2011Electrical properties and thermal stability of FePO4 glasses and nanomaterialscitations
- 2011Electrical properties vs. microstructure of nanocrystallized V2O5–P2O5 glasses — An extended temperature range studycitations
- 2011Electrical conductivity and phase transformations in the composite ionic conductors AgI : α-Al2O3 prepared via a high-pressure routecitations
- 2009Novel nanomaterials based on electronic and mixed conductive glassescitations
- 2009The thermal stability, local structure and electrical properties of lithium-iron phosphate glasses
- 2009Correlation between electrical properties and microstructure of nanocrystallized V2O5–P2O5 glassescitations
- 2008Electrical properties and microstructure of glassy-crystalline Ag+-ion conducting composites synthesized by a high-pressure methodcitations
- 2007Nanocrystallization as a method of improvement of electrical properties and thermal stability of V2O5-rich glassescitations
- 2007Conductivity, thermal behavior and microstructure of new composites based on AgI–Ag2O–B2O3 glasses with Al2O3 matrixcitations
- 2006Conductivity and microstructure of silver borate glass/zirconia composites, prepared via a high pressure route
- 2006Effect of nanocrystallization on the electronic conductivity of vanadate-phosphate glassescitations
- 2006Crystallization processes in superionic AgI-Ag20-P205 ([Ag2O]/[P2O5] = 3) glasses
- 2005A XANES study of the valence state of vanadium in lithium vanadate phosphate glassescitations
- 2004Enhancement of electrical conductivity in lithium vanadate glasses by nanocrystallizationcitations
- 2003Cyclic voltammetry and impedance spectroscopy studies of silver vanadate phosphate glassescitations
- 2001Ionic conductivity of glass-ceramic composites in the AgI-Ag<inf>2</inf>O-V<inf>2</inf>O<inf>5</inf> system
Places of action
Organizations | Location | People |
---|
article
Electrical properties and thermal stability of FePO4 glasses and nanomaterials
Abstract
Glasses under study were prepared by a standard press quenching technique. Differential thermal analysis (DTA) measurements have shown that the as-obtained glasses are stable up to 530 °C. The DTA traces contain three thermal events: a baseline shift due to the glass transition followed by two distinct exothermic peaks related to crystallization processes. The positions of maxima of those peaks obey a Kissinger formula with the activation energy values: 3.7 ± 0.1 eV, 4.3 ± 0.2 eV, respectively. Heating of the samples to about 620 °C leads to their nanocrystallization. The average grain size in nanocrystalline samples as estimated from scanning electron microscopy (SEM) and X-ray diffraction (XRD) is between 60 and 70 nm. The nanocrystallized samples have two important advantages: they are stable to at least 660 °C and their electronic conductivity at room temperature is substantially higher than that of the as-prepared glasses (1.2·10− 7 S/cm vs. 1.5·10− 8 S/cm).