People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gierlotka, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2020High Pressure Quenched Glasses: unique structures and propertiescitations
- 2019Nanocrystalline NiAl intermetallic alloy with high hardness produced by mechanical alloying and hot-pressing consolidationcitations
- 2019NiAl-B composites with nanocrystalline intermetallic matrix produced by mechanical alloying and consolidationcitations
- 2011Electrical properties and thermal stability of FePO4 glasses and nanomaterialscitations
- 2011Electrical properties vs. microstructure of nanocrystallized V2O5–P2O5 glasses — An extended temperature range studycitations
- 2011Electrical conductivity and phase transformations in the composite ionic conductors AgI : α-Al2O3 prepared via a high-pressure routecitations
- 2009Correlation between electrical properties and microstructure of nanocrystallized V2O5–P2O5 glassescitations
- 2008Electrical properties and microstructure of glassy-crystalline Ag+-ion conducting composites synthesized by a high-pressure methodcitations
- 2007Conductivity, thermal behavior and microstructure of new composites based on AgI–Ag2O–B2O3 glasses with Al2O3 matrixcitations
- 2006Conductivity and microstructure of silver borate glass/zirconia composites, prepared via a high pressure route
- 2006SiC-Zn nanocomposites obtained using the high-pressure infiltration technique
- 2006TiC Nanocrystal Formation from Carburization of Laser-Grown Ti/O/C Nanopowders for Nanostructured Ceramicscitations
- 2005Elaboration of SiC, TiC and ZrC nanopowders by laser pyrolysis : from nanoparticles to ceramic nanomaterialscitations
- 2004Chapter 13. Microwave-Driven Hydrothermal Synthesis of Oxide Nanopowders for Applications in Optoelectronicscitations
Places of action
Organizations | Location | People |
---|
article
Electrical properties vs. microstructure of nanocrystallized V2O5–P2O5 glasses — An extended temperature range study
Abstract
An electronically conducting nanomaterial was synthesized by nanocrystallization of a 90V2O5·10P2O5 glass and its electrical properties were studied in an extended temperature range from − 170 to + 400 °C. The conductivity of the prepared nanomaterial reaches 2 ∙ 10− 1 S cm− 1 at 400 °C and 2 ∙ 10− 3 S cm− 1 at room temperature. It is higher than that of the original glass by a factor of 25 at room temperature and more than 100 below − 80 °C. A key role in the conductivity enhancement was ascribed to the material's microstructure, and in particular to the presence of the large number of small (ca. 20 nm) grains of crystalline V2O5. The observed conductivity dependencies are discussed in terms of the Mott's theory of the electronic hopping transport in disordered systems. Since V2O5 is known for its ability to intercalate lithium, the presented results might be helpful in the development of cathode materials for Li-ion batteries.