People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hansen, Kent Kammer
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2019Corrosion Study of Cr-Oxide Ceramics Using Rotating Ring Disk Electrode
- 2019Silver Modified Cathodes for Solid Oxide Fuel Cellscitations
- 2018Electrochemical removal of NOx using oxide-based electrodes - A reviewcitations
- 2018Novel Processing of Cathodes for Solid Oxide Fuel Cells
- 2017Determination of the Resistance of Cone-Shaped Solid Electrodescitations
- 2016Effect of pore formers on properties of tape cast porous sheets for electrochemical flue gas purificationcitations
- 2015Hybrid direct carbon fuel cell anode processes investigated using a 3-electrode half-cell setupcitations
- 2015In Situ Studies of Fe4+ Stability in β-Li3Fe2(PO4)3 Cathodes for Li Ion Batteriescitations
- 2015Catalytic Enhancement of Carbon Black and Coal-Fueled Hybrid Direct Carbon Fuel Cellscitations
- 2014Removal of NOx with Porous Cell Stacks with La0.85Sr0.15CoxMn1-xO3+δ-Ce0.9Gd0.1O1.95 Electrodes Infiltrated with BaOcitations
- 2014High Performance Infiltrated Backbones for Cathode-Supported SOFC's
- 2013A combined SEM, CV and EIS study of multi-layered porous ceramic reactors for flue gas purificationcitations
- 2013Fabrication and Characterization of multi-layer ceramics for electrochemical flue gas purificationcitations
- 2012Electrochemical reduction of NO<sub>x</sub>
- 2010Solid Oxide Fuel Cell
- 2010Characterization of (La1-xSrx)(s)MnO3 and Doped Ceria Composite Electrodes in NOx-Containing Atmosphere with Impedance Spectroscopycitations
- 2010Ceria and strontium titanate based electrodes
- 2010Sintering effect on material properties of electrochemical reactors used for removal of nitrogen oxides and soot particles emitted from diesel enginescitations
- 2010The Effect of a CGO Barrier Layer on the Performance of LSM/YSZ SOFC Cathodescitations
- 2009Processing and characterization of porous electrochemical cells for flue gas purificationcitations
- 2009Electrochemical characterization and redox behavior of Nb-doped SrTiO3citations
- 2008Niobium-doped strontium titanates as SOFC anodes
- 2008Strontium Titanate-based Composite Anodes for Solid Oxide Fuel Cellscitations
- 2008Defect and electrical transport properties of Nb-doped SrTiO3citations
- 2007Synthesis of Nb-doped SrTiO3 by a modified glycine-nitrate processcitations
- 2007Gd0.6Sr0.4Fe0.8Co0.2O3-δ: A novel type of SOFC cathodecitations
- 2006Studies of Fe-Co based perovskite cathodes with different A-site cationscitations
- 2005Charge disproportionation in (X0.6Sr0.4)0.99Fe0.8Co0.2O3-δ perovskites (X = La, Pr, Sm, Gd)citations
- 2005LSFM perovskites as cathodes for the electrochemical reduction of NOcitations
- 2001Perovskites as catalysts for the selective catalytic reduction of nitric oxide with propene: Relationship between solid state properties and catalytic activitycitations
Places of action
Organizations | Location | People |
---|
article
Studies of Fe-Co based perovskite cathodes with different A-site cations
Abstract
Iron-cobalt based perovskite cathodes with different A-site cations ((Ln(0.6)Sr(0.4))(0.99)Fe0.8Co0.2O3-delta, where Ln is La, Pr, Sm or Gd) have been synthesised, characterised by a powder XRD, dilatometry, 4-point DC conductivity measurements, and electrochemical impedance spectroscopy (EIS) on cone shaped electrodes. In addition to this scanning electron microscopy (SEM) was used to characterise the bars. XRD revealed that only the La-containing perovskite was hexagonal. The Pr and Sm perovskites were orthorhombic. The gadolinium-based perovskite was a two phase system consisting of an orthorhombic and a cubic perovskite phase. The thermal expansion coefficient (TEC) increased systematically with a decrease in the size of the A-site cation until the gadoliniurn-containing perovskite where the TEC decreases abruptly. The total electric conductivity was the highest for the La-based perovskite and the lowest for the Gd-based perovskite as determined by 4-point DC conductivity measurements on bars. A clear correlation between the size of the A-site cation and the electrochemical performance was revealed, as the area specific resistance (ASR) was the lowest for the compounds with the smallest A-site cation. This might be explained on the background of the creation of a two-phase structure with a unique microstructure when the size of the A-site cation is lowered, or that one of the phases has a high electro-catalytic activity towards the electrochemical reduction of oxygen. (c) 2006 Elsevier B.V. All rights reserved.