Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Delmotte, J.

  • Google
  • 1
  • 17
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011Si passivation for Ge pMOSFETs26citations

Places of action

Chart of shared publication
Zaima, S.
1 / 2 shared
Loo, R.
1 / 9 shared
Rip, J.
1 / 1 shared
Verbiest, T.
1 / 3 shared
Vandervorst, W.
1 / 14 shared
Dekoster, J.
1 / 4 shared
Mitard, J.
1 / 1 shared
Vanbel, M.
1 / 1 shared
Jaeger, B. De
1 / 2 shared
Caymax, M.
1 / 25 shared
Takeuchi, S.
1 / 3 shared
Vincent, B.
1 / 8 shared
Douhard, B.
1 / 3 shared
Valev, Vk
1 / 9 shared
Claypool, C.
1 / 1 shared
Brijs, B.
1 / 7 shared
Conard, T.
1 / 16 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Zaima, S.
  • Loo, R.
  • Rip, J.
  • Verbiest, T.
  • Vandervorst, W.
  • Dekoster, J.
  • Mitard, J.
  • Vanbel, M.
  • Jaeger, B. De
  • Caymax, M.
  • Takeuchi, S.
  • Vincent, B.
  • Douhard, B.
  • Valev, Vk
  • Claypool, C.
  • Brijs, B.
  • Conard, T.
OrganizationsLocationPeople

article

Si passivation for Ge pMOSFETs

  • Zaima, S.
  • Loo, R.
  • Rip, J.
  • Verbiest, T.
  • Vandervorst, W.
  • Dekoster, J.
  • Mitard, J.
  • Vanbel, M.
  • Jaeger, B. De
  • Delmotte, J.
  • Caymax, M.
  • Takeuchi, S.
  • Vincent, B.
  • Douhard, B.
  • Valev, Vk
  • Claypool, C.
  • Brijs, B.
  • Conard, T.
Abstract

<p>Ultra thin Si cap growth by Reduced Pressure Chemical Vapor Deposition on relaxed Ge substrates is detailed in this paper for Ge pMOSFET (Metal Oxide Semiconductor Field Effect Transistors) passivation purposes. A cross calibration of different measurement techniques is first proposed to perfectly monitor Si monolayers thickness deposited on Ge substrates. Different characteristics, impacting Ge pMOSFETs device performances, are next detailed for various Si cap growth processes using different Si precursors: DiChloroSilane (DCS), silane and trisilane. The critical Si thickness of plastic relaxation has been determined at 12 monolayers. Presence of point defects has been identified for very low growth temperature as 350 °C. Ge-Si intermixing, caused by a Ge segregation mechanism, is strongly reduced by the use of trisilane as Si precursor at low temperatures.</p>

Topics
  • impedance spectroscopy
  • polymer
  • semiconductor
  • chemical vapor deposition
  • point defect