People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Asgari, Asgari
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024The first proof-of-concept of straightforward and ambient-processed CsPbBr3 perovskite light-emitting electrochemical cellcitations
- 2024High-performance semi-transparent organic solar cells for window applications using MoO3/Ag/MoO3 transparent anodescitations
- 2024Enhancing Efficiency of Luminescent Solar Concentrators through Laser Grooving Techniques
- 2024Enhanced performance of ambient-air processed CsPbBr3 perovskite light-emitting electrochemical cells via synergistic incorporation of dual additivescitations
- 2023Nitride/Perovskite Tandem Solar Cell with High Stabilitycitations
- 2023Improving phototransistor performance with polymer-quantum dot hybrid technologycitations
- 2023The role of domain size and weight ratio of fullerene and non-fullerene acceptors on performance of PM6:Y6citations
- 2021Perovskite-coated window glasses as semi-transparent luminescent solar concentratorscitations
- 2021Fabrication of a light-emitting device based on the CdS/ZnS spherical quantum dotscitations
- 2020The improved performance of BHJ organic solar cells by random dispersed metal nanoparticles through the active layercitations
- 2018Radiation characteristics of Leaky Surface Plasmon polaritons of graphenecitations
- 2017Modeling and optimizing the performance of plasmonic solar cells using effective medium theorycitations
Places of action
Organizations | Location | People |
---|
article
High-performance semi-transparent organic solar cells for window applications using MoO3/Ag/MoO3 transparent anodes
Abstract
<p>The optimization of semi-transparent organic solar cells involves balancing average visible transparency (AVT) and power conversion efficiency (PCE). We propose enhancing ST-OSC performance by replacing the conventional opaque Ag electrode with a MoO<sub>3</sub>/Ag/MoO<sub>3</sub> as a dielectric/metal/dielectric (DMD) layer structure, explored theoretically and experimentally. A prototype ST-OSC configuration, comprising ITO/ZnO/P3HT: PCBM/MoO3/Ag/MoO3, was fabricated with varying thicknesses of the MoO<sub>3</sub>/Ag/MoO<sub>3</sub> layer, determined through theoretical calculations utilizing MATLAB software. This study investigates the impact of metal layer thickness on two active layer densities (10 and 18 mg/mL) and evaluates AVT, color rendering index, Correlated Color Temperature, and CIELAB color coordinates (a*, b*). Both theoretical calculations and experimental results confirm that the optimized configuration of the DMD structure with specific layer thicknesses for each component (MoO<sub>3</sub> = 10nm/Ag = 6nm/MoO<sub>3</sub> = 30 nm) achieves an AVT of over 59.60 %. This high level of transparency makes this configuration suitable for applications requiring both high transparency and efficient light transmission. The optimized device delivered high-quality light transmission, approaching white perception to the human eye. This combined approach validates empirical results and provides a deeper understanding of transparent OSC mechanisms.</p>