Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Phung, N.

  • Google
  • 7
  • 47
  • 369

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Opto-electrical modelling and roadmap for 2T monolithic Perovskite/CIGS tandem solar cells7citations
  • 2024Opto-electrical modelling and roadmap for 2T monolithic Perovskite/CIGS tandem solar cells7citations
  • 2023Photoprotection in metal halide perovskites by ionic defect formation41citations
  • 20223D Simulation of Ion Migration within the Microstructure of Perovskite Solar Cellscitations
  • 2020The Role of Grain Boundaries on Ionic Defect Migration in Metal Halide Perovskites148citations
  • 2020The Doping Mechanism of Halide Perovskite Unveiled by Alkaline Earth Metals166citations
  • 20193D simulation of ion migration within the microstructure of perovskite solar cellscitations

Places of action

Chart of shared publication
Procel, Paul
1 / 14 shared
Knobbe, J.
2 / 2 shared
Ma, M.
2 / 5 shared
Mazzarella, Luana
1 / 9 shared
Isabella, Olindo
1 / 18 shared
Santbergen, Rudi
1 / 5 shared
Rezaei, Nasim
1 / 1 shared
Zardetto, V.
2 / 13 shared
Rezaei, N.
1 / 1 shared
Simor, M.
1 / 1 shared
Procel, P.
1 / 1 shared
Santbergen, R.
1 / 6 shared
Veenstra, S.
1 / 2 shared
Mazzarella, L.
1 / 3 shared
Isabella, O.
1 / 7 shared
Creatore, M.
1 / 64 shared
Mattoni, A.
2 / 12 shared
Smith, Ja
1 / 13 shared
Abate, A.
4 / 21 shared
Gagliardi, A.
2 / 17 shared
Kaiser, W.
2 / 8 shared
Albrecht, S.
2 / 8 shared
Al-Ashouri, A.
2 / 7 shared
Merdasa, A.
1 / 2 shared
L., Unger E.
1 / 1 shared
Meloni, S.
1 / 7 shared
Chart of publication period
2024
2023
2022
2020
2019

Co-Authors (by relevance)

  • Procel, Paul
  • Knobbe, J.
  • Ma, M.
  • Mazzarella, Luana
  • Isabella, Olindo
  • Santbergen, Rudi
  • Rezaei, Nasim
  • Zardetto, V.
  • Rezaei, N.
  • Simor, M.
  • Procel, P.
  • Santbergen, R.
  • Veenstra, S.
  • Mazzarella, L.
  • Isabella, O.
  • Creatore, M.
  • Mattoni, A.
  • Smith, Ja
  • Abate, A.
  • Gagliardi, A.
  • Kaiser, W.
  • Albrecht, S.
  • Al-Ashouri, A.
  • Merdasa, A.
  • L., Unger E.
  • Meloni, S.
OrganizationsLocationPeople

article

Opto-electrical modelling and roadmap for 2T monolithic Perovskite/CIGS tandem solar cells

  • Procel, Paul
  • Knobbe, J.
  • Ma, M.
  • Mazzarella, Luana
  • Isabella, Olindo
  • Santbergen, Rudi
  • Rezaei, Nasim
  • Phung, N.
  • Zardetto, V.
Abstract

<p>Two terminal (2T) perovskite/copper-indium-gallium-selenide (CIGS) tandem solar cells combine high conversion efficiency with lightweight flexible substrates which can decrease manufacturing and installation costs. In order to improve the power conversion efficiency of these tandem solar cells, the use of advanced simulation tools is crucial to estimate the loss mechanisms. In this regard, most of the available simulation works on tandem solar cells are oriented to minimize optical losses and assuming simplifications for the electrical simulations in particular in the top and bottom cell interconnection at the so-called tunnel recombination junction (TRJ) neglecting the inner physics of the complete tandem device. Therefore, the effect of charge exchange mechanism between top and bottom soler cells on the external parameters of a tandem devices is not fully understood yet. In this work, we present an experimentally validated opto-electrical model based on the fundamental semiconductor equations for the study of loss mechanisms of a reference perovskite/CIGS solar cell. Different from other numerical works, because our simulation platform includes the fundamental working mechanisms of the layers comprising the TRJ, we can properly calculate the losses related to it. We firstly present the calibration and validation of our opto-electrical model with respect to three fabricated reference solar cells: top cell only, bottom cell only and tandem device. Then, we use the calibrated model to evaluate main loss mechanisms affecting the baseline tandem device. Finally, we use the model to propose a roadmap for the optimization of monolithic perovskite/CIGS tandem solar cells.</p>

Topics
  • perovskite
  • impedance spectroscopy
  • simulation
  • semiconductor
  • copper
  • power conversion efficiency
  • Gallium
  • Indium