People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rasul, Shahid
Northumbria University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Shaping sustainable pathwayscitations
- 2024Enhancing lithium-ion battery anode performance via heterogeneous nucleation of silver within Ti3C2-MXene frameworkscitations
- 2024Innovative Tin and hard carbon architecture for enhanced stability in lithium-ion battery anodescitations
- 2024Sputtered Hard Carbon for High-Performance Energy Storage Batteries
- 2024Designing Molybdenum Trioxide and Hard Carbon Architecture for Stable Lithium‐Ion Battery Anodescitations
- 2023Multi-layered Sn and Hard Carbon Architectures for Long-Term Stability and High-Capacity Lithium-Ion Battery Anodes
- 2023Fabrication of WO3 / Fe 2 O 3 heterostructure photoanode by PVD for photoelectrochemical applicationscitations
- 2023Advancing Lithium-Ion Battery Anodes: Novel Sn and Hard Carbon Architectures for Long-Term Stability and High Capacity
- 2023Molybdenum Incorporated O3‐type Sodium Layered Oxide Cathodes for High‐Performance Sodium‐Ion Batteriescitations
- 2022Coal fly ash supported CoFe2O4 nanocompositescitations
- 2021Enhancement of mechanical and corrosion resistance properties of electrodeposited Ni–P–TiC composite coatingscitations
- 2021In Situ Printing and Functionalization of Hybrid Polymer-Ceramic Composites Using a Commercial 3D Printer and Dielectrophoresis—A Novel Conceptual Designcitations
- 2021In situ printing and functionalization of hybrid polymer-ceramic composites using a commercial 3d printer and dielectrophoresis—a novel conceptual designcitations
- 2016Characterization of a porous carbon material functionalized with cobalt-oxide/cobalt core-shell nanoparticles for lithium ion battery electrodes
- 2016A simple UV-ozone surface treatment to enhance photocatalytic performance of TiO 2 loaded polymer nanofiber membranescitations
- 2014Photoelectrochemical and electrocatalytic properties of thermally oxidized copper oxide for efficient solar fuel productioncitations
- 2012High capacity positive electrodes for secondary Mg-ion batteriescitations
- 2012Synthesis and electrochemical behavior of hollandite MnO2/acetylene black composite cathode for secondary Mg-ion batteriescitations
Places of action
Organizations | Location | People |
---|
article
Fabrication of WO3 / Fe 2 O 3 heterostructure photoanode by PVD for photoelectrochemical applications
Abstract
The bottleneck of cost-effective green hydrogen production through the photoelectrochemical (PEC) water splitting process is lack of suitable materials. To address the material challenge, we have fabricated a heterostructure nanorod ofWO3/Fe2O3utilizing a high-throughput radio frequency (RF) sputtering Physical vapor deposition (PVD) technique. With optimized parameters, such as as-deposited Fe of 70 nm, a deposition angle of 70°, and an annealing temperature of 500 °C,WO3/Fe2O3photoanodes with a morphology of vertically aligned nanorods were fabricated. A rod-like morphology withWO3nanoparticles was synthesized by the addition of 15 nm of tungsten oxide (WO3) to theFe2O3nanorods. To study the optical behavior and morphology, the pristine and WO3/Fe2O3heterostructure thin films were characterized by ultraviolet photoelectron spectroscopy (UPS), ultraviolet UV, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). This has led to a 5-fold improvement in PEC performance (0.588 mA/cm2 at 1.23 V vs. RHE for the mixture compared to 0.122 mA/cm2 at 1.23 V vs. RHE for the pristine). As a co-catalyst,WO3successfully suppressed recombination and assisted in the hole transfer, which immediately increased the photocurrent density of fabricated photoanodes. This was illustrated via the electrochemical impedance spectra including both Nyquist and Mott-Schottky plots with or without illumination. When sustained in steady illumination for 900 s, this photoanode displayed highly stable behavior under PEC conditions.