Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kankkunen, Ari

  • Google
  • 3
  • 6
  • 59

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Polypyrrole-modified flax fiber sponge impregnated with fatty acids as bio-based form-stable phase change materials for enhanced thermal energy storage and conversion21citations
  • 2024Polypyrrole-modified flax fiber sponge impregnated with fatty acids as bio-based form-stable phase change materials for enhanced thermal energy storage and conversion21citations
  • 2023Flexible and conductive nanofiber textiles for leakage-free electro-thermal energy conversion and storage17citations

Places of action

Chart of shared publication
Yazdani Mccord, Maryam Roza
2 / 6 shared
Seppälä, Jukka
3 / 42 shared
Chatzikosmidou, Despoina
3 / 4 shared
Baniasadi, Hossein
3 / 21 shared
Seppälä, Ari
2 / 9 shared
Yazdani Mccord, Roza
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Yazdani Mccord, Maryam Roza
  • Seppälä, Jukka
  • Chatzikosmidou, Despoina
  • Baniasadi, Hossein
  • Seppälä, Ari
  • Yazdani Mccord, Roza
OrganizationsLocationPeople

article

Flexible and conductive nanofiber textiles for leakage-free electro-thermal energy conversion and storage

  • Yazdani Mccord, Maryam Roza
  • Seppälä, Jukka
  • Chatzikosmidou, Despoina
  • Baniasadi, Hossein
  • Kankkunen, Ari
Abstract

The authors would like to acknowledge financial support from Business Finland (7428/31/2022, PCMI project), the Research Council of Finland; No. 343192 (SoMa), No. 327248 (ValueBiomat), and No. 327865 (Bioeconomy). We thank Ari Seppälä for the thermal conductivity measurements. ; In this contribution, a novel flexible phase change textiles based on decanoic acid (DA) and polyamide 11 (PA11) blends with various DA/PA11 mass ratios, in which PA11 acted as the polymer matrix, and DA behaved as phase change ingredient, were developed via electrospinning. Besides, a conductive polypyrrole (PPy) coating was designed via in-situ polymerization. Morphological observations carried out by the SEM images demonstrated porous and highly homogeneous morphology with smooth, long, continuous, and free-bead fibers. Furthermore, forming of a uniform PPy layer on the surface was confirmed through the images. As such, conductive textiles with electrical conductivity up to 28.89 ± 1.50 S/m were prepared. Tensile testing showed that the mechanical properties did not change considerably after PPy coating. Moreover, the phase change performance was investigated using DSC analysis, where the melting and crystallization enthalpies were respectively 112.77 J/g and 110.21 J/g in the textile with the highest DA loading, i.e., 70 wt%. More notably, the phase-change enthalpies did not change considerably after 100 DSC thermal cycles. Finally, significant electro- and photo-heat storage and conversion were observed for the conductive PCM textiles. Thus, this work introduced new flexible smart textiles with significant potential in wearable and protective systems. ; Peer reviewed

Topics
  • porous
  • surface
  • polymer
  • phase
  • scanning electron microscopy
  • differential scanning calorimetry
  • thermal conductivity
  • electrical conductivity
  • crystallization
  • electrospinning
  • in-situ polymerization