Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Procel, Paul

  • Google
  • 14
  • 56
  • 266

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2024Opto-electrical modelling and roadmap for 2T monolithic Perovskite/CIGS tandem solar cells7citations
  • 2022The fundamental operation mechanisms of nc-SiOX≥0:H based tunnel recombination junctions revealed9citations
  • 2022Slow Shallow Energy States as the Origin of Hysteresis in Perovskite Solar Cells9citations
  • 2022Future of n-type PVcitations
  • 2022Introducing a comprehensive physics-based modelling framework for tandem and other PV systems10citations
  • 2022Raman spectroscopy of silicon with nanostructured surface11citations
  • 2022Achieving 23.83% conversion efficiency in silicon heterojunction solar cell with ultra-thin MoOx hole collector layer via tailoring (i)a-Si:H/MoOx interface62citations
  • 2021Design and optimization of hole collectors based on nc-SiOx:H for high-efficiency silicon heterojunction solar cells34citations
  • 2021On current collection from supporting layers in perovskite/c-Si tandem solar cells1citations
  • 2020Copper-Plating Metallization With Alternative Seed Layers for c-Si Solar Cells Embedding Carrier-Selective Passivating Contacts23citations
  • 2020Realizing the Potential of RF-Sputtered Hydrogenated Fluorine-Doped Indium Oxide as an Electrode Material for Ultrathin SiO x/Poly-Si Passivating Contacts12citations
  • 2019Effective Passivation of Black Silicon Surfaces via Plasma-Enhanced Chemical Vapor Deposition Grown Conformal Hydrogenated Amorphous Silicon Layer22citations
  • 2018Poly-crystalline silicon-oxide films as carrier-selective passivating contacts for c-Si solar cells47citations
  • 2017Poly-Si(O)x passivating contacts for high-efficiency c-Si IBC solar cells19citations

Places of action

Chart of shared publication
Knobbe, J.
1 / 2 shared
Ma, M.
1 / 5 shared
Mazzarella, Luana
7 / 9 shared
Isabella, Olindo
14 / 18 shared
Santbergen, Rudi
5 / 5 shared
Rezaei, Nasim
1 / 1 shared
Phung, N.
1 / 7 shared
Zardetto, V.
1 / 13 shared
Zhao, Yifeng
6 / 7 shared
Smets, Arno H. M.
1 / 1 shared
Parasramka, Harsh
1 / 2 shared
Vrijer, Thierry De
1 / 1 shared
Nijen, David Van
1 / 1 shared
Heerden, Rik Van
2 / 2 shared
Köhnen, Eike
1 / 5 shared
Boccard, Mathieu
1 / 6 shared
Yang, Guangtao
7 / 7 shared
Korte, Lars
1 / 14 shared
Al-Ashouri, Amran
1 / 17 shared
Han, Can
4 / 4 shared
Ziar, Hesan
1 / 1 shared
Vogt, Malte Ruben
1 / 1 shared
Blom, Youri
1 / 1 shared
Tobon, C. Ruiz
1 / 1 shared
Stark, T.
1 / 2 shared
Din, A. Nour El
1 / 1 shared
Alcañiz Moya, Alba
2 / 2 shared
Etxebarria, J. G.
1 / 1 shared
Goma, E. Garcia
1 / 1 shared
Zeman, Miro
10 / 21 shared
Wang, Z.
1 / 99 shared
Vančo, Ľubomír
1 / 2 shared
Breza, Juraj
1 / 2 shared
Mikolášek, Miroslav
1 / 2 shared
Fröhlich, Karol
1 / 1 shared
Hušeková, Kristína
1 / 3 shared
Kadlečíková, Magdaléna
1 / 1 shared
Cao, Liqi
1 / 1 shared
Tichelaar, F. D.
1 / 43 shared
Yan, Jin
1 / 2 shared
Özkol, Engin
2 / 2 shared
Yao, Zhirong
1 / 1 shared
Weeber, Arthur
4 / 7 shared
Singh, Manvika
1 / 1 shared
Syifai, Indra
1 / 1 shared
Groot, Yvar De
1 / 1 shared
Kuler, Gerwin Van
1 / 1 shared
Limodio, Gianluca
1 / 2 shared
Zhang, Xiaodan
1 / 11 shared
Schut, Henk
1 / 3 shared
Eijt, Stephan
1 / 1 shared
Montes, Ana
1 / 2 shared
Medlin, Rostislav
1 / 1 shared
Šutta, Pavol
1 / 1 shared
Guo, Peiqing
1 / 1 shared
Zhang, Yue
1 / 11 shared
Chart of publication period
2024
2022
2021
2020
2019
2018
2017

Co-Authors (by relevance)

  • Knobbe, J.
  • Ma, M.
  • Mazzarella, Luana
  • Isabella, Olindo
  • Santbergen, Rudi
  • Rezaei, Nasim
  • Phung, N.
  • Zardetto, V.
  • Zhao, Yifeng
  • Smets, Arno H. M.
  • Parasramka, Harsh
  • Vrijer, Thierry De
  • Nijen, David Van
  • Heerden, Rik Van
  • Köhnen, Eike
  • Boccard, Mathieu
  • Yang, Guangtao
  • Korte, Lars
  • Al-Ashouri, Amran
  • Han, Can
  • Ziar, Hesan
  • Vogt, Malte Ruben
  • Blom, Youri
  • Tobon, C. Ruiz
  • Stark, T.
  • Din, A. Nour El
  • Alcañiz Moya, Alba
  • Etxebarria, J. G.
  • Goma, E. Garcia
  • Zeman, Miro
  • Wang, Z.
  • Vančo, Ľubomír
  • Breza, Juraj
  • Mikolášek, Miroslav
  • Fröhlich, Karol
  • Hušeková, Kristína
  • Kadlečíková, Magdaléna
  • Cao, Liqi
  • Tichelaar, F. D.
  • Yan, Jin
  • Özkol, Engin
  • Yao, Zhirong
  • Weeber, Arthur
  • Singh, Manvika
  • Syifai, Indra
  • Groot, Yvar De
  • Kuler, Gerwin Van
  • Limodio, Gianluca
  • Zhang, Xiaodan
  • Schut, Henk
  • Eijt, Stephan
  • Montes, Ana
  • Medlin, Rostislav
  • Šutta, Pavol
  • Guo, Peiqing
  • Zhang, Yue
OrganizationsLocationPeople

article

Introducing a comprehensive physics-based modelling framework for tandem and other PV systems

  • Procel, Paul
  • Ziar, Hesan
  • Isabella, Olindo
  • Santbergen, Rudi
  • Vogt, Malte Ruben
  • Blom, Youri
  • Tobon, C. Ruiz
  • Stark, T.
  • Din, A. Nour El
  • Alcañiz Moya, Alba
  • Etxebarria, J. G.
  • Goma, E. Garcia
  • Zeman, Miro
  • Wang, Z.
Abstract

<p>We introduce a novel simulation tool capable of calculating the energy yield of a PV system based on its fundamental material properties and using self-consistent models. Thus, our simulation model can operate without measurements of a PV device. It combines wave and ray optics and a dedicated semiconductor simulation to model the optoelectronic PV device properties resulting in the IV-curve. The system surroundings are described via spectrally resolved ray tracing resulting in a cell resolved irradiance distribution, and via the fluid dynamics-based thermal model, in the individual cell temperatures. A lumped-element model is used to calculate the IV-curves of each solar cell for every hour of the year. These are combined factoring in the interconnection to obtain the PV module IV-curves, which connect to the inverter for calculating the AC energy yield. In our case study, we compare two types of 2 terminal perovskite/silicon tandem modules with STC PV module efficiencies of 27.7% and 28.6% with a reference c-Si module with STC PV module efficiency of 20.9%. In four different climates, we show that tandem PV modules operate at 1–1.9 °C lower yearly irradiance weighted average temperatures compared to c-Si. We find that the effect of current mismatch is significantly overestimated in pure optical studies, as they do not account for fill factor gains. The specific yields in kWh/kWp of the tandem PV systems are between −2.7% and +0.4% compared to the reference c-Si system in all four simulated climates. Thus, we find that the lab performance of the simulated tandem PV system translates from the laboratory to outdoors comparable to c-Si systems.</p>

Topics
  • perovskite
  • impedance spectroscopy
  • simulation
  • semiconductor
  • Silicon