People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ding, Yulong
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024A comprehensive material and experimental investigation of a packed bed latent heat storage system based on waste foundry sandcitations
- 2023Hybridization of Salt Hydrates with Solid–Solid Phase Change Materials: A Novel Pathway to Sorption Thermochemical Materials Manufacturingcitations
- 2022Effect of SiO2 nanoparticles concentration on the corrosion behaviour of solar salt-based nanofluids for concentrating solar power plantscitations
- 2022Valorization of phosphogypsum as a thermal energy storage material for low temperature applicationscitations
- 2021New shape-stabilized phase change materials obtained by single-screw extrudercitations
- 2021Evaluation of Ga0.2Li6.4Nd3Zr2O12 garnetscitations
- 2021Red mud-molten salt composites for medium-high temperature thermal energy storage and waste heat recovery applicationscitations
- 2020High-temperature corrosion behaviour of metal alloys in commercial molten saltscitations
- 2020Inhibiting hot corrosion of molten Li2CO3-Na2CO3-K2CO3 salt through graphitization of construction materials for concentrated solar powercitations
Places of action
Organizations | Location | People |
---|
article
Effect of SiO2 nanoparticles concentration on the corrosion behaviour of solar salt-based nanofluids for concentrating solar power plants
Abstract
<p>Recently, corrosion of nanoparticles molten salt-based nanofluids studies have emerged as Concentrating Solar Power plants provide a low carbon alternative to produce electricity. Enhancing the heat capacity and thermal conductivity of molten salts by using inorganic nanoparticles has been targeted as a strategy to decrease the overall investment cost of CSP systems. However, there is scarce and insufficient information about their effect on the corrosion behaviour of nanofluids, whether the nanoparticle content increases it or have no significant effect. The scatter data found show no clear agreement and the measurements are done under different conditions (temperature, time, impurities, nanoparticle's chemical nature and concentration, metal and alloy composition, testing method). In this context, the authors evaluated the effect of SiO<sub>2</sub> nanoparticles concentration in an industrial-grade Solar Salt in contact with four different alloys; AISI 1045, 304H, 316L and Inconel 600 by isothermal tests, 500 °C up to 2160 h. The effect of nanoparticles, 0.5% and 1% wt., was evaluated in comparison with Solar Salt industrial grade. The corrosion rate of the samples decreased in the following order AISI 1045 > 304H > 316L > Inconel 600 and nanoparticles increased in general and to a different extent the corrosion rate of the alloys. The one that experiences the highest nanoparticle effect is stainless steel 304H, followed by AISI 1045 and Inconel. For 316L, no significant differences can be seen. The applicability assessment carried out has shown that molten salt nitrate-based nanofluids can be used with Inconel 600, 304H and 316L in long-term service high-temperature applications such as CSP.</p>