Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Maher, Salar Delkasar

  • Google
  • 2
  • 7
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022On the compatibility of liquid sodium as heat transfer fluid for advanced concentrated solar thermal energy systems6citations
  • 2022Critical components in supercritical CO2 Brayton cycle power blocks for solar power systems: Degradation mechanisms and failure consequences14citations

Places of action

Chart of shared publication
Andersson, Gunther G.
1 / 7 shared
Ong, Teng
1 / 3 shared
Woodcock, Jack
1 / 1 shared
Lewis, David
1 / 16 shared
Rumman, Raihan
1 / 6 shared
Olivares, Rene
1 / 1 shared
Ong, Teng-Cheong
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Andersson, Gunther G.
  • Ong, Teng
  • Woodcock, Jack
  • Lewis, David
  • Rumman, Raihan
  • Olivares, Rene
  • Ong, Teng-Cheong
OrganizationsLocationPeople

article

On the compatibility of liquid sodium as heat transfer fluid for advanced concentrated solar thermal energy systems

  • Andersson, Gunther G.
  • Ong, Teng
  • Woodcock, Jack
  • Lewis, David
  • Maher, Salar Delkasar
  • Rumman, Raihan
Abstract

The use of liquid sodium as a heat transfer fluid has shown great promise and application in nuclear power generation and it is now being utilized in concentrated solar thermal power (CSP) applications, owing to its favorable thermodynamic properties. Its implementation, however, comes with a unique array of technical issues in CSP applications, primarily the incompatibility of structural materials with liquid sodium in these operational environments. In this review, major damage mechanisms will be discussed, with a focus on their relevance to advanced CSP plants. Such mechanisms include corrosion, liquid metal embrittlement, carburization/de-carburization, erosion, creep, and thermal fatigue. The degradation factors such as impurities in the sodium (e.g. oxygen) and the dissolution of the structural material's alloying elements (Cr, Mn, Ni and Si, etc.) are also discussed. This review presents a holistic overview of these inter-connected mechanisms, and most importantly explores potential solutions to mitigate these issues, including better structural material candidates, robust plant operational parameters/design, better service life predictions, and improved purification and monitoring methods for stringent control of impurities. The future directions of research are also discussed to ensure the successful use of liquid sodium in the next generation of CSP technology.

Topics
  • impedance spectroscopy
  • corrosion
  • Oxygen
  • Sodium
  • fatigue
  • creep