People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Procel, Paul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Opto-electrical modelling and roadmap for 2T monolithic Perovskite/CIGS tandem solar cellscitations
- 2022The fundamental operation mechanisms of nc-SiOX≥0:H based tunnel recombination junctions revealedcitations
- 2022Slow Shallow Energy States as the Origin of Hysteresis in Perovskite Solar Cellscitations
- 2022Future of n-type PV
- 2022Introducing a comprehensive physics-based modelling framework for tandem and other PV systemscitations
- 2022Raman spectroscopy of silicon with nanostructured surfacecitations
- 2022Achieving 23.83% conversion efficiency in silicon heterojunction solar cell with ultra-thin MoOx hole collector layer via tailoring (i)a-Si:H/MoOx interfacecitations
- 2021Design and optimization of hole collectors based on nc-SiOx:H for high-efficiency silicon heterojunction solar cellscitations
- 2021On current collection from supporting layers in perovskite/c-Si tandem solar cellscitations
- 2020Copper-Plating Metallization With Alternative Seed Layers for c-Si Solar Cells Embedding Carrier-Selective Passivating Contactscitations
- 2020Realizing the Potential of RF-Sputtered Hydrogenated Fluorine-Doped Indium Oxide as an Electrode Material for Ultrathin SiO x/Poly-Si Passivating Contactscitations
- 2019Effective Passivation of Black Silicon Surfaces via Plasma-Enhanced Chemical Vapor Deposition Grown Conformal Hydrogenated Amorphous Silicon Layercitations
- 2018Poly-crystalline silicon-oxide films as carrier-selective passivating contacts for c-Si solar cellscitations
- 2017Poly-Si(O)x passivating contacts for high-efficiency c-Si IBC solar cellscitations
Places of action
Organizations | Location | People |
---|
article
The fundamental operation mechanisms of nc-SiOX≥0:H based tunnel recombination junctions revealed
Abstract
<p>Two terminal multi-junction (MJ) photovoltaic (PV) devices are well established concepts to increase the solar-to-electrical power conversion in reference to single PV junctions. In multi-junction PV devices two consecutive sub-cells are interconnected using a tunnel recombination junction (TRJ) in which the light excited holes of one sub-cell recombine with the light excited electrons of the other sub cell. An ideal TRJ is an ohmic contact with non-rectifying behaviour. TRJ's based on p- and n-doped silicon-oxides have been successfully applied in a variety of hybrid multi-junction PV devices in which tunnelling and trap-assisted tunnelling over width of 5–20 nm rules the TRJ's recombination kinetics. In this contribution the qualitative fundamental working principles of tunnel recombination junctions based on p- and n-doped silicon and silicon-oxide alloys are revealed using both electrical modelling and experiments based on a unique set of tandem lab cells (four types based on four different PV materials) combined with structural variations in TRJ architectures. The study results in design rules for the integration of silicon-oxide based TRJ's and provides fundamental insights into the sensitivity of the electrical performance of the TRJ's to doping concentrations, to alignment of the conduction and valence bands of consecutive sub-cells, to the nature of interface defects, to the growth of amorphous and crystalline phases and its dependence on substrate or seed layers and to the nanoscale thicknesses of the TRJ layers.</p>