People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Boden, Stuart
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022FAPbBr3 perovskite quantum dots as a multifunctional luminescent-downshifting passivation layer for GaAs solar cellscitations
- 2022Light scattering from black silicon surfaces and its benefits for encapsulated solar cellscitations
- 2020Optoelectronic properties of ultrathin ALD silicon nitride and its potential as a hole-selective nanolayer for high efficiency solar cellscitations
- 2019Characterization of atomic layer deposited alumina thin films on black silicon textures using helium ion microscopycitations
- 2018Metal-assisted chemically etched black silicon for crystalline silicon solar cells
- 2017Development of amorphous silicon solar cells with plasmonic light scattering
- 2016Nanopores within 3D-structured gold film for sensing applications
- 2015Epitaxial Interdigitated Back Contact (IBC) solar cell test platform for novel light trapping schemes
Places of action
Organizations | Location | People |
---|
article
Light scattering from black silicon surfaces and its benefits for encapsulated solar cells
Abstract
Black silicon (b-Si) has been widely investigated as a potential replacement for more traditional antireflective schemes for silicon solar cells, such as random pyramids, due to its reduced broadband reflectance and improved light-trapping properties. Wavelength and angle resolved scattering (WARS) reflectance measurements provide the means of analysing the amount of light scattered from a textured surface, which can be of interest when considering the amount of light trapped through total internal reflectance (TIR) at various interfaces in an encapsulated photovoltaic module. Here we present and analyse results from WARS measurements on b-Si surfaces fabricated using metal assisted chemical etching (MACE). Large angle scattering is observed for the entire spectrum, increasingly so for shorter incident wavelengths and increasing height of texture features. This is predicted to result in 35-40% of the reflected light being trapped by TIR at the glass-air interface and redirected back onto the sample, when the sample is encapsulated in standard PV module materials. This leads to a calculated additional boost of up to 0.45% in the photogenerated current of an encapsulated black silicon solar cell. This exceeds the calculated 0.21% boost due to TIR predicted for an encapsulated solar cell employing the industry-standard random pyramid texture with a thin film antireflective coating.