People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Boden, Stuart
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022FAPbBr3 perovskite quantum dots as a multifunctional luminescent-downshifting passivation layer for GaAs solar cellscitations
- 2022Light scattering from black silicon surfaces and its benefits for encapsulated solar cellscitations
- 2020Optoelectronic properties of ultrathin ALD silicon nitride and its potential as a hole-selective nanolayer for high efficiency solar cellscitations
- 2019Characterization of atomic layer deposited alumina thin films on black silicon textures using helium ion microscopycitations
- 2018Metal-assisted chemically etched black silicon for crystalline silicon solar cells
- 2017Development of amorphous silicon solar cells with plasmonic light scattering
- 2016Nanopores within 3D-structured gold film for sensing applications
- 2015Epitaxial Interdigitated Back Contact (IBC) solar cell test platform for novel light trapping schemes
Places of action
Organizations | Location | People |
---|
article
FAPbBr3 perovskite quantum dots as a multifunctional luminescent-downshifting passivation layer for GaAs solar cells
Abstract
<p>Solar cells based on GaAs often include a wide-bandgap semiconductor as a window layer to improve surface passivation. Such devices often have poor photon-to-electron conversion efficiency at higher photon energies due to parasitic absorption. In this article, we deposit FAPbBr3 perovskite quantum dots on the AlInP window layer of a GaAs thin-film solar cell to improve the external quantum efficiency (EQE) across its entire absorption range, resulting in an 18% relative enhancement of the short-circuit current density. Luminescent downshifting from the quantum dots to the GaAs device contributes to a large effective enhancement of the internal quantum efficiency (IQE) at shorter wavelengths. Additionally, improved surface passivation of the window layer results in a 14–16% broadband increase of the IQE. These mechanisms combined with increased overall photon collection (antireflective effects) results in a doubling of the EQE in the ultraviolet region of the solar spectrum. Our results show a promising application of perovskite nanocrystals to improve the performance of well-established thin-film solar cell technologies.</p>