People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Navarro, M. Elena
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024A comprehensive material and experimental investigation of a packed bed latent heat storage system based on waste foundry sandcitations
- 2023Hybridization of Salt Hydrates with Solid–Solid Phase Change Materials: A Novel Pathway to Sorption Thermochemical Materials Manufacturingcitations
- 2022Effect of SiO2 nanoparticles concentration on the corrosion behaviour of solar salt-based nanofluids for concentrating solar power plantscitations
- 2022Valorization of phosphogypsum as a thermal energy storage material for low temperature applicationscitations
- 2021Red mud-molten salt composites for medium-high temperature thermal energy storage and waste heat recovery applicationscitations
- 2020High-temperature corrosion behaviour of metal alloys in commercial molten saltscitations
- 2020Wettability of NaNO3 and KNO3 on MgO and Carbon Surfaces-Understanding the Substrate and the Length Scale Effectscitations
- 2020Inhibiting hot corrosion of molten Li2CO3-Na2CO3-K2CO3 salt through graphitization of construction materials for concentrated solar powercitations
- 2012Manufacturing of anode-supported tubular solid oxide fuel cells by a new shaping technique using aqueous gel-castingcitations
- 2010Effect of microencapsulated phase change material in sandwich panelscitations
Places of action
Organizations | Location | People |
---|
article
Inhibiting hot corrosion of molten Li2CO3-Na2CO3-K2CO3 salt through graphitization of construction materials for concentrated solar power
Abstract
<p>Next-generation concentrated solar power (CSP) plants are expected to work above the current temperature limit of 565 °C for the benefit of enhanced efficiency. This poses significant challenges in the construction materials, among others, in terms of corrosion. In this work, we investigate the spray-graphitization method to improve the compatibility of SS310 and SS347 with molten Li<sub>2</sub>CO<sub>3</sub>-Na<sub>2</sub>CO<sub>3</sub>-K<sub>2</sub>CO<sub>3</sub> carbonate salt. Improved compatibility was observed due to the formation of protective carbonate or carbide layers on SS347 and SS310 surfaces, respectively. Detailed characterization of the corrosion products, including chemical reactions and wettability allowed the mechanism of anticorrosion protection to be proposed, which could be used for other construction materials in direct contact with high-temperature molten salts for next-generation CSP plants and beyond.</p>