People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Esperança, José Manuel Silva Simões
Universidade Nova de Lisboa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Multifunctional magnetoelectric sensing and bending actuator response of polymer-based hybrid materials with magnetic ionic liquidscitations
- 2023CO2 hydrates phase behaviour and onset nucleation temperatures in mixtures of H2O and D2Ocitations
- 2022Structural organization of ionic liquids embedded in fluorinated polymerscitations
- 2021Photocurable temperature activated humidity hybrid sensing materials for multifunctional coatingscitations
- 2020Design of Ionic-Liquid-Based Hybrid Polymer Materials with a Magnetoactive and Electroactive Multifunctional Responsecitations
- 2020Chitosan polymer electrolytes doped with a dysprosium ionic liquidcitations
- 2020QSPR Modeling of Liquid-liquid Equilibria in Two-phase Systems of Water and Ionic Liquidcitations
- 2019Ionic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly(vinylidene fluoride)-Based Soft Actuatorscitations
- 2019Ionic-liquid-based printable materials for thermochromic and thermoresistive applicationscitations
- 2018Low-field giant magneto-ionic response in polymer-based nanocompositescitations
- 2017Playing with ionic liquids to uncover novel polymer electrolytescitations
- 2017Effect of storage time on the ionic conductivity of chitosan-solid polymer electrolytes incorporating cyano-based ionic liquidscitations
- 2017Polymer electrolytes for electrochromic devices through solvent casting and sol-gel routescitations
- 2017Structural, morphological, ionic conductivity, and thermal properties of pectin-based polymer electrolytescitations
- 2017A luminescent europium ionic liquid to improve the performance of chitosan polymer electrolytescitations
- 2016Imidazolium-based ionic liquid type dependence of the bending response of polymer actuatorscitations
- 2016Electromechanical actuators based on poly(vinylidene fluoride) with [N1 1 1 2(OH)][NTf2] and [C2mim] [C2SO4]citations
- 2016Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applicationscitations
- 2015High performance electromechanical actuators based on ionic liquid/poly(vinylidene fluoride)citations
- 2015Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene fluoride)/ionic liquid blendscitations
- 2015Effect of the alkyl chain length of the ionic liquid anion on polymer electrolytes propertiescitations
- 2014Generating ionic liquids from ionic solidscitations
- 2014Ionic liquids for solid-state electrolytes and electrosynthesiscitations
- 2013Development of solid polymer electrolytes based on poly(vinylidene fluoride-trifluoroethylene) and the [N-1 1 1 2(OH)][NTf2] ionic liquid for energy storage applicationscitations
- 2013Thermophysical and magnetic studies of two paramagnetic liquid salts: [C(4)mim][FeCl4] and [P-66614][FeCl4]citations
- 2013Electrochemical applications of electrolytes based on ionic liquidscitations
- 2012Synthesis and electrochemical characterization of aPEO-based polymer electrolytescitations
Places of action
Organizations | Location | People |
---|
article
Polymer electrolytes for electrochromic devices through solvent casting and sol-gel routes
Abstract
<p>Ionically conductive membranes of gelatin and d-PCL(530)/siloxane doped with cyano-based ionic liquids (ILs) were prepared through solvent casting and sol-gel methods, respectively. The membranes were characterized in terms of ionic conductivity, thermal behavior, morphology, and structure. All samples, except the d-PCL(530)/siloxane matrix, exhibited a predominantly amorphous morphology. The samples prepared through solvent casting and sol-gel displayed a minimum thermal stability of 170 and 230 °C, respectively. The ionic conductivity varied according with the type, quantity, and length of the alkyl chain of the cation of the ILs. The sample with the highest ionic conductivity was gelatin<sub>0.5</sub>[C<sub>2</sub>mim][N(CN)<sub>2</sub>] with 2.40×10<sup>−3</sup> S cm<sup>−1</sup> at 25 °C and 1.68×10<sup>−2</sup> S cm<sup>−1</sup> at 95 °C. The good results of ionic conductivity encouraged the assembly and characterization of prototypes of electrochromic devices (ECDs). The best results were obtained with glass/ITO/WO<sub>3</sub>/gelatin<sub>1</sub>[C<sub>2</sub>mim][SCN]/CeO<sub>2</sub>-TiO<sub>2</sub>/ITO/glass configuration that showed a fast color switching time (~15 s) and a good open circuit memory (~4 h). The ECD changed its color from pale blue to transparent, and its charge density decreased from −17.53 to −2.71 mC cm<sup>−2</sup> during 640 color/bleaching cycles.</p>