Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gaceur, M.

  • Google
  • 4
  • 31
  • 52

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021Photo-Activated Phosphorescence of Ultrafine ZnS:Mn Quantum Dots: On the Lattice Strain Contribution4citations
  • 2017P-type semiconductor surfactant modified zinc oxide nanorods for hybrid bulk heterojunction solar cells16citations
  • 2017P-type semiconductor surfactant modified zinc oxide nanorods for hybrid bulk heterojunction solar cells16citations
  • 2016P-type semiconductor surfactant modified zinc oxide nanorods for hybrid bulk heterojunction solar cells16citations

Places of action

Chart of shared publication
Ammar, S.
1 / 6 shared
Cannas, M.
1 / 21 shared
Battaglini, N.
1 / 1 shared
Sciortino, A.
1 / 6 shared
Messina, F.
1 / 10 shared
Patriarche, G.
1 / 94 shared
J., Von Bardeleben H.
1 / 1 shared
Notebaert, B.
1 / 1 shared
V., Longo A.
1 / 1 shared
Ackermann, C.
2 / 2 shared
Ishwara, T.
3 / 3 shared
Fall, S.
3 / 3 shared
Watanabe, T.
3 / 10 shared
Martini, C.
3 / 18 shared
Wang, M.
3 / 25 shared
Hannani, D.
3 / 3 shared
Poize, G.
3 / 4 shared
Margeat, O.
3 / 5 shared
Fages, F.
3 / 6 shared
Dkhil, S. Ben
1 / 1 shared
Yoshimoto, N.
3 / 4 shared
Shupyk, I.
3 / 3 shared
Nelson, J.
3 / 40 shared
Dachraoui, W.
3 / 3 shared
Brunel, F.
3 / 5 shared
Shilova, E.
3 / 3 shared
Ackermann, Jörg
1 / 22 shared
Mawyin, J.
3 / 3 shared
Ackermann, J.
2 / 6 shared
Ben Dkhil, S.
2 / 3 shared
Videlot-Ackermann, C.
1 / 8 shared
Chart of publication period
2021
2017
2016

Co-Authors (by relevance)

  • Ammar, S.
  • Cannas, M.
  • Battaglini, N.
  • Sciortino, A.
  • Messina, F.
  • Patriarche, G.
  • J., Von Bardeleben H.
  • Notebaert, B.
  • V., Longo A.
  • Ackermann, C.
  • Ishwara, T.
  • Fall, S.
  • Watanabe, T.
  • Martini, C.
  • Wang, M.
  • Hannani, D.
  • Poize, G.
  • Margeat, O.
  • Fages, F.
  • Dkhil, S. Ben
  • Yoshimoto, N.
  • Shupyk, I.
  • Nelson, J.
  • Dachraoui, W.
  • Brunel, F.
  • Shilova, E.
  • Ackermann, Jörg
  • Mawyin, J.
  • Ackermann, J.
  • Ben Dkhil, S.
  • Videlot-Ackermann, C.
OrganizationsLocationPeople

article

P-type semiconductor surfactant modified zinc oxide nanorods for hybrid bulk heterojunction solar cells

  • Ackermann, C.
  • Ishwara, T.
  • Fall, S.
  • Watanabe, T.
  • Martini, C.
  • Wang, M.
  • Hannani, D.
  • Poize, G.
  • Margeat, O.
  • Fages, F.
  • Dkhil, S. Ben
  • Yoshimoto, N.
  • Shupyk, I.
  • Nelson, J.
  • Dachraoui, W.
  • Brunel, F.
  • Shilova, E.
  • Gaceur, M.
  • Ackermann, Jörg
  • Mawyin, J.
Abstract

In this work, hybrid bulk heterojunction solar cells based on surfactant-modified zinc oxide nanorods (ZnO NRs) blended with poly-(3-hexylthiophene) (P3HT) are presented. (E)-2-cyano-3-(5′-(4-(dibutylamino)styryl)-2,2′-bithiophen-5-yl)acrylic acid (1), a p-type semiconductor, is used as grafted interfacial surfactant on ZnO NRs, named 1-ZnO NRs, in order to improve simultaneously the nanoscale morphology of the hybrid polymer blend as well as the electronic properties of the heterojunction interface. Our studies reveal that the ligand modification of ZnO NRs leads to strongly improved aggregate free P3HT/ZnO blends that show five time increased power conversion efficiency and corresponding photo-generated charge carrier transport compared to untreated ZnO NRs. From transient absorption spectroscopy, it was found that recombination kinetics were similar in the device using untreated ZnO and modified 1-ZnO NRs, respectively, pointing to a major impact of the ligand in the improvement of the blend morphology. Corresponding device optimization led to improvements of FF and Voc to values comparable to P3HT blends using fullerene acceptors, but photocurrent density of the P3HT/1-ZnO solar cells was found low even after optimization. The latter could be addressed to destruction of long range organization of P3HT induced by the presence of the ZnO NRs as well as low electron transport inside the blend.

Topics
  • density
  • impedance spectroscopy
  • morphology
  • zinc
  • interfacial
  • surfactant
  • power conversion efficiency
  • polymer blend
  • p-type semiconductor