People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zoppi, Guillaume
Northumbria University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (36/36 displayed)
- 2024An Alternative Chlorine-Assisted Optimization of CdS/Sb2Se3 Solar Cellscitations
- 2024Design and optimization of plasmonic nanoparticles-enhanced perovskite solar cells using the FDTD methodcitations
- 2023Biocompatible Ti3Au–Ag/Cu thin film coatings with enhanced mechanical and antimicrobial functionalitycitations
- 2023Biocompatible Ti3Au–Ag/Cu thin film coatings with enhanced mechanical and antimicrobial functionalitycitations
- 2023Effect of metal dopants on the electrochromic performance of hydrothermally-prepared tungsten oxide materialscitations
- 2023A structural, optical and electrical comparison between physical vapour deposition and slot-die deposition of Al:ZnO (AZO)
- 2023Analyzing and Exploring a Model for High-Efficiency Perovskite Solar Cellscitations
- 2022Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistancecitations
- 2022Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistancecitations
- 2022Elimination of the carbon-rich layer in Cu2ZnSn(S, Se)4 absorbers prepared from nanoparticle inkscitations
- 2022Sodium Fluoride Doping Approach to CdTe Solar Cellscitations
- 2022Routes to Increase Performance for Antimony Selenide Solar Cells using Inorganic Hole Transport Layerscitations
- 2022Ex-situ Ge-doping of CZTS Nanocrystals and CZTSSe Solar Absorber Filmscitations
- 2022Field enhancement in hydrogen storage by periodic layered structurescitations
- 2022Exploring the Role of Temperature and Hole Transport Layer on the Ribbon Orientation and Efficiency of Sb2Se3 cells Deposited via Thermal Evaporation
- 2022Ex situ Ge-doping of CZTS nanocrystals and CZTSSe solar absorber films.citations
- 2022Recovery mechanisms in aged kesterite solar cellscitations
- 2020Innovative fabrication of low-cost kesterite solar cells for distributed energy applications
- 2019Solution processing route to Na incorporation in CZTSSe nanoparticle ink solar cells on foil substratecitations
- 2018Temperature controlled properties of sub-micron thin SnS filmscitations
- 2018Temperature controlled properties of sub-micron thin SnS filmscitations
- 2018CZTSSe Solar Cells from Nanoparticle Inks
- 2017A combined Na and Cl treatment to promote grain growth in MOCVD grown CdTe thin filmscitations
- 2016Selenization kinetics inCu2ZnSn(S,Se)4 solar cells prepared from nanoparticle inkscitations
- 2016Sodium Induced Microstructural Changes in MOCVD-Grown CdTe Thin Films
- 2016The role of nanoparticle inks in determining the performance of solution processed Cu2ZnSn(S,Se)4thin film solar cellscitations
- 2016Influence of Different Substrates on the Properties of Sulfurized SnS Filmscitations
- 2013Study of the Al-grading effect in the crystallisation of chalcopyrite Cu(In,Al)Se2 thin films selenised at different temperaturescitations
- 2013Crystallographic properties and elemental migration in two-stage prepared CuIn1−xAlxSe2 thin films for photovoltaic applicationscitations
- 2012Thin film solar cells based on the ternary compound Cu2SnS3citations
- 2011Electrical, morphological and structural properties of RF magnetron sputtered Mo thin films for application in thin film photovoltaic solar cellscitations
- 2010CuInSe2 precursor films electro-deposited directly onto MoSe2citations
- 2010Optical properties of thin films of Cu2ZnSnSe4 fabricated by sequential deposition and selenisation
- 2010Control of grain size in sublimation-grown CdTe, and the improvement in performance of devices with systematically increased grain sizecitations
- 2010A feasibility study towards ultra-thin PV solar cell devices by MOCDV based on a p-i-n structure incorporating pyrite
- 2008New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber materialcitations
Places of action
Organizations | Location | People |
---|
article
Selenization kinetics inCu2ZnSn(S,Se)4 solar cells prepared from nanoparticle inks
Abstract
Earth-abundant Cu2ZnSn(S,Se)4 (CZTSSe) thin film photovoltaic absorber layers are fabricated by annealing Cu2ZnSnS4 (CZTS) nanoparticle thin films in a selenium rich atmosphere. Systematic variation of the selenization time (5, 10, 20 and 40 min) and temperature (450, 500, 550 and 600 °C) provides insight into the kinetics of the selenization process and in particular recrystallization and grain growth. Se–S anion exchange is found to follow Avrami׳s model in which the CZTS selenization is controlled by an irregular one-dimensional process limited by metal cation re-ordering and grain boundary migration. CZTSSe grain growth is observed to follow a normal relation with a grain growth exponent close to the ideal case of equiaxed grains and the grain boundary migration energy is calculated to be 85.38 kJ/mol. These selenization variables have a fundamental influence on the quality of the resulting CZTSSe thin film and consequently the device performance. A peak device solar energy conversion efficiency of 5.4% was obtained for selenization at 500 °C for 20 min. The device efficiency was found to be highly sensitive to these variables and it is critical to obtain an appropriate balance between grain growth and thin film quality.