People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marques-Hueso, Jose
Heriot-Watt University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Upconversion 3D printing enhancement via silver sensitization to enable selective metallizationcitations
- 2023Low-power laser manufacturing of copper tracks on 3D printed geometry using liquid polyimide coatingcitations
- 2022Multimaterial 3D Printing Technique for Electronic Circuitry Using Photopolymer and Selective Metallizationcitations
- 2022Routes towards manufacturing biodegradable electronics with polycaprolactone (PCL) via direct light writing and electroless platingcitations
- 2020Light based synthesis of metallic nanoparticles on surface-modified 3D printed substrates for high performance electronic systemscitations
- 2019A rapid technique for the direct metallization of PDMS substrates for flexible and stretchable electronics applicationscitations
- 2019Selective Electroless Copper Deposition by Using Photolithographic Polymer/Ag Nanocompositecitations
- 2019Photolithographic nanoseeding method for selective synthesis of metal-catalysed nanostructurescitations
- 2019Selective Metallization of 3D Printable Thermoplastic Polyurethanescitations
- 2019Selective metallisation of 3D printable thermoplastic polyurethanescitations
- 2018A Rapid Photopatterning Method for Selective Plating of 2D and 3D Microcircuitry on Polyetherimidecitations
- 2018A Rapid Photopatterning Method for Selective Plating of 2D and 3D Microcircuitry on Polyetherimidecitations
- 2018Hybrid Additive Manufacture of Conformal Antennascitations
- 2014Physical performance limitations of luminescent down-conversion layers for photovoltaic applicationscitations
- 2013Enhanced up-conversion for photovoltaics using 2D photonic crystalscitations
- 2012Optical properties of lanthanide dyes for spectral conversion encapsulated in porous silica nanoparticles
- 2012Nanoplasmonics for photovoltaic applicationscitations
- 2012Plasmon dumping in Ag-nanoparticles/polymer composite for optical detection of amines and thiols vaporscitations
Places of action
Organizations | Location | People |
---|
article
Physical performance limitations of luminescent down-conversion layers for photovoltaic applications
Abstract
<p>An optical model is presented to determine the constraints imparted by self-absorption on the luminescence emitted from down-conversion (DC) materials. An analytical formula was derived demonstrating that, for a given DC material, an optimal thickness exists that maximizes the intensity of the emitted radiation, while minimizing the impact of self-absorption. This defines a new limit for the optical efficiency of a DC material that is governed by its geometry. Subsequently, the model was validated through experimental analysis of a specific down-converting borate glass co-doped with Ce3+-Yb3+, whose optimal thickness has been determined to be 0.83 mm. The model clarifies the origin of the disparity between the theoretical and the experimental efficiencies reported for some materials. The results from this work assist with the design and implementation of DC layers for photovoltaic devices, as well as providing a framework for optimization of DC materials to other fields of optics and photonics. (C) 2013 Elsevier B.V. All rights reserved.</p>