Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Van, J. J. Franeker

  • Google
  • 2
  • 11
  • 57

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Stochastic modeling and predictive simulations for the microstructure of organic semiconductor films processed with different spin coating velocities16citations
  • 2013All-solution-processed organic solar cells with conventional architecture41citations

Places of action

Chart of shared publication
Schmidt, V.
1 / 7 shared
Brereton, T.
1 / 1 shared
Janssen, René A. J.
2 / 151 shared
Kroese, D. P.
1 / 1 shared
Westhof, D.
1 / 1 shared
Hendriks, K. H.
1 / 9 shared
Galagan, Y.
1 / 9 shared
Voorthuijzen, W. P.
1 / 2 shared
Andriessen, R.
1 / 7 shared
Gorter, H.
1 / 2 shared
Hadipour, A.
1 / 6 shared
Chart of publication period
2015
2013

Co-Authors (by relevance)

  • Schmidt, V.
  • Brereton, T.
  • Janssen, René A. J.
  • Kroese, D. P.
  • Westhof, D.
  • Hendriks, K. H.
  • Galagan, Y.
  • Voorthuijzen, W. P.
  • Andriessen, R.
  • Gorter, H.
  • Hadipour, A.
OrganizationsLocationPeople

article

All-solution-processed organic solar cells with conventional architecture

  • Hendriks, K. H.
  • Galagan, Y.
  • Voorthuijzen, W. P.
  • Andriessen, R.
  • Gorter, H.
  • Janssen, René A. J.
  • Hadipour, A.
  • Van, J. J. Franeker
Abstract

All-solution processed organic solar cells with a conventional device structure were demonstrated. The evaporated low work function LiF/Al electrode was replaced by a printed high work function silver electrode combined with an additional electron transport layer (ETL). Two electron transport layers were tested: (I) zinc oxide (ZnO) nanoparticles and (II) poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9–dioctylfluorene)] (PFN). Devices with printed silver nanoparticle inks on top of the ZnO electron transport layer lead to crack formation in the silver layer during the drying and sintering. The crack formation was avoided by using PFN as electron transport layer. The sputtered high work function ITO electrode was substituted by a printed composite electrode containing inkjet-printed silver grids in combination with high conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). All-solution processed solar cells demonstrated a power conversion efficiency of 1.94%.

Topics
  • nanoparticle
  • silver
  • zinc
  • crack
  • composite
  • drying
  • sintering
  • power conversion efficiency