People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jørgensen, Mikkel
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024Biocomposite Films of Amylose Reinforced with Polylactic Acid by Solvent Casting Method Using a Pickering Emulsion Approachcitations
- 2016The Organic Power Transistor: Roll-to-Roll Manufacture, Thermal Behavior, and Power Handling When Driving Printed Electronicscitations
- 2015Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cellscitations
- 2015Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cellscitations
- 2015Roll-to-Roll Printed Silver Nanowire Semitransparent Electrodes for Fully Ambient Solution-Processed Tandem Polymer Solar Cellscitations
- 2015Making Ends Meet: Flow Synthesis as the Answer to Reproducible High-Performance Conjugated Polymers on the Scale that Roll-to-Roll Processing Demandscitations
- 2014TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaborationcitations
- 2013Roll-to-Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integrationcitations
- 2013Roll-to-Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integrationcitations
- 2013All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cellscitations
- 2013All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cellscitations
- 2013Non-destructive lateral mapping of the thickness of the photoactive layer in polymer-based solar cellscitations
- 2013A laboratory scale approach to polymer solar cells using one coating/printing machine, flexible substrates, no ITO, no vacuum and no spincoatingcitations
- 2012TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices - the ISOS-3 inter-laboratory collaborationcitations
- 2012Stability of Polymer Solar Cellscitations
- 2012Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processescitations
- 2012Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processescitations
- 2012High-throughput roll-to-roll X-ray characterization of polymer solar cell active layerscitations
- 2012Aesthetically Pleasing Conjugated Polymer: Fullerene Blends for Blue-Green Solar Cells Via Roll-to-Roll Processingcitations
- 2012TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaborationcitations
- 2012TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaborationcitations
- 2012TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devicescitations
- 2012Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from watercitations
- 2012Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from watercitations
- 2011Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methodscitations
- 2011Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methodscitations
- 2011Fused thiophene/quinoxaline low band gap polymers for photovoltaic's with increased photochemical stabilitycitations
- 2011Roll-to-Roll Processing of Inverted Polymer Solar Cells using Hydrated Vanadium(V)Oxide as a PEDOT:PSS Replacementcitations
- 2011ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modulescitations
- 2010Upscaling of polymer solar cell fabrication using full roll-to-roll processingcitations
- 2010Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printingcitations
- 2009Structural determination of ethylene-propylene-diene rubber (EPDM) containing high degree of controlled long-chain branchingcitations
- 2009Thermo-cleavable solvents for printing conjugated polymers: Application in polymer solar cellscitations
- 2006Lifetimes of organic photovoltaics: Design and synthesis of single oligomer molecules in order to study chemical degradation mechanismscitations
Places of action
Organizations | Location | People |
---|
article
All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cells
Abstract
Inverted all polymer solar cells based on a blend of a perylene diimide based polymer acceptor and a dithienosilole based polymer donor were fabricated from small area devices to roll-to-roll (R2R) coated and printed large area modules. The device performance was successfully optimized by using solvent additive to tune the phase separation. By adding 2% chloronaphthalene as solvent additive for small area (0.25 cm2) devices, a power conversion efficiency (PCE) up to 0.63% was achieved for inverted geometry, higher than that (0.39%) of conventional geometry. This polymer blend showed excellent solution processibility and R2R coated and printed large area (4.2 cm 2) solar cells exhibited a PCE of 0.20%. © 2013 Elsevier B.V.