People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mkhoyan, K. Andre
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Optical Properties of Electrochemically Gated La 1− xSr xCoO 3−δ as a Topotactic Phase-Change Materialcitations
- 2023Anomalous strain relaxation and its impact on the valence-driven spin-state/metal-insulator transition in epitaxial (Pr1−yYy)1−xCaxCoO3−δcitations
- 2023Spin Hall conductivity in Bi$_{1-x}$Sb$_x$ as an experimental test of bulk-boundary correspondence
- 2021Spin and Charge Interconversion in Dirac-Semimetal Thin Filmscitations
- 2020Layer Dependence of Dielectric Response and Water-Enhanced Ambient Degradation of Highly Anisotropic Black Ascitations
- 2020Ambipolar transport in van der Waals black arsenic field effect transistorscitations
- 2020Plasmonic nanocomposites of zinc oxide and titanium nitridecitations
- 2020Self-Assembled Periodic Nanostructures Using Martensitic Phase Transformationscitations
- 2020Thermal transport in ZnO nanocrystal networks synthesized by nonthermal plasmacitations
- 2018Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) filmscitations
- 2015Giant Spin Pumping and Inverse Spin Hall Effect in the Presence of Surface and Bulk Spin-Orbit Coupling of Topological Insulator Bi2Se3citations
- 2015Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinementcitations
- 2015Hybrid molecular beam epitaxy for the growth of stoichiometric BaSnO3citations
- 2012Sputter deposition of semicrystalline tin dioxide filmscitations
- 2012Improving the damp-heat stability of copper indium gallium diselenide solar cells with a semicrystalline tin dioxide overlayercitations
- 2010Orientation and morphological evolution of catalyst nanoparticles during carbon nanotube growthcitations
- 2010Effect of hydrogen on catalyst nanoparticles in carbon nanotube growthcitations
Places of action
Organizations | Location | People |
---|
article
Improving the damp-heat stability of copper indium gallium diselenide solar cells with a semicrystalline tin dioxide overlayer
Abstract
<p>While copper indium gallium diselenide (CIGS) thin film solar cells with laboratory efficiencies exceeding 20% have been reported, these high efficiencies may degrade with time as the devices are exposed to humid environments. Specifically, it is well known that water can diffuse to the CIGS-CdS-ZnO heterojunction. This penetration must be reduced or stopped to increase the solar cell lifetime. Herein, we show that tin dioxide layers deposited on top of completed CIGS solar cells can significantly increase the device lifetime by forming a barrier against water diffusion. Specifically, in accelerated damp-heat tests, our best results showed that initially 8-12% efficient CIGS solar cells did not decay from this peak efficiency even after 240 h at 85 °C and 85% relative humidity. In comparison, under identical test conditions, the solar cells without the tin dioxide layer lost nearly 80% of their initial efficiency, within 24 h after commencing the test. We deposited the tin dioxide films by radio frequency magnetron sputtering from tin dioxide targets at 5 mTorr. Semicrystalline SnO <sub>2</sub> films deposited at room temperature had SnO <sub>2</sub> nanocrystals embedded in amorphous SnO <sub>2</sub> without grain boundaries. The semicrystalline films exhibited better damp-heat stability than crystalline films deposited at higher temperature. We infer from the slow open circuit voltage decay that water permeation to the p-n junction is reduced when semicrystalline SnO <sub>2</sub> overlayers are used to protect the solar cell. We attribute this difference in damp heat stability to the lack of grain boundary water diffusion in semicrystalline SnO <sub>2</sub> films.</p>