Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Burke, Kerry

  • Google
  • 1
  • 8
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012A study of the factors influencing the performance of ternary MEH-PPV:porphyrin:PCBM heterojunction devices: electronic effects in porphyrinoid ternary blend bulk heterojunction photovoltaic devices18citations

Places of action

Chart of shared publication
Dastoor, Paul
1 / 7 shared
Sales, Timothy
1 / 1 shared
Zhou, Xiaojing
1 / 7 shared
Sauer, Samantha
1 / 1 shared
Cooling, Nathan
1 / 1 shared
Belcher, Warwick
1 / 7 shared
Lind, Samuel
1 / 1 shared
Gordon, Keith
1 / 1 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Dastoor, Paul
  • Sales, Timothy
  • Zhou, Xiaojing
  • Sauer, Samantha
  • Cooling, Nathan
  • Belcher, Warwick
  • Lind, Samuel
  • Gordon, Keith
OrganizationsLocationPeople

article

A study of the factors influencing the performance of ternary MEH-PPV:porphyrin:PCBM heterojunction devices: electronic effects in porphyrinoid ternary blend bulk heterojunction photovoltaic devices

  • Dastoor, Paul
  • Sales, Timothy
  • Zhou, Xiaojing
  • Sauer, Samantha
  • Cooling, Nathan
  • Burke, Kerry
  • Belcher, Warwick
  • Lind, Samuel
  • Gordon, Keith
Abstract

A series of porphyrins and N-confused porphyrins have been prepared in which the peripheral groups on the porphyrins are kept constant and the porphyrinoids differ only in their electronic nature. The materials have been blended into the active layer of MEH-PPV:PCBM bulk heterojunction solar cells and the performance of the cells is reported and discussed. All of the added porphyrinoids contribute to the photocurrent of the resultant solar cells and result in a broadening of the spectral response of the cells in accordance with the absorption spectra of the porphyrinoid. The efficiency of these devices is shown to correlate strongly with the ionization potential (IP), and thus highest occupied molecular orbital (HOMO) level, of the added porphyrinoid. We argue that the relative energy of the HOMO levels of the porphyrinoids and the hole transporting polymer in these devices, coupled with the poor charge mobilities of N-confused porphyrins combine to generate porphyrinoid-based hole traps in these devices. This increases recombination within these devices, lowering both the devices' charge densities and open circuit voltages and resulting in reduced cell efficiencies. We show that varying the porphyrinoid added, by metallation or N-alkylation of the N-confused porphyrin, allows us to systematically change the IP of the species and directly affect the power conversion efficiency of the resultant device. The implications of this work for optimising the performance of ternary blend bulk heterojunction solar cells are discussed.

Topics
  • impedance spectroscopy
  • polymer
  • power conversion efficiency