People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Søndergaard, Roar R.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2020Scalable fabrication of organic solar cells based on non-fullerene acceptorscitations
- 2020Scalable fabrication of organic solar cells based on non-fullerene acceptorscitations
- 2018Mechanical stability of roll-to-roll printed solar cells under cyclic bending and torsioncitations
- 2016The Organic Power Transistor: Roll-to-Roll Manufacture, Thermal Behavior, and Power Handling When Driving Printed Electronicscitations
- 2015Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cellscitations
- 2015Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cellscitations
- 2015Roll-to-Roll Printed Silver Nanowire Semitransparent Electrodes for Fully Ambient Solution-Processed Tandem Polymer Solar Cellscitations
- 2015Making Ends Meet: Flow Synthesis as the Answer to Reproducible High-Performance Conjugated Polymers on the Scale that Roll-to-Roll Processing Demandscitations
- 2013Roll-to-Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integrationcitations
- 2013Roll-to-Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integrationcitations
- 2013All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cellscitations
- 2013All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cellscitations
- 2013Comparison of Fast Roll-to-Roll Flexographic, Inkjet, Flatbed, and Rotary Screen Printing of Metal Back Electrodes for Polymer Solar Cellscitations
- 2012Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processescitations
- 2012Rapid flash annealing of thermally reactive copolymers in a roll-to-roll process for polymer solar cellscitations
- 2011Fused thiophene/quinoxaline low band gap polymers for photovoltaic's with increased photochemical stabilitycitations
Places of action
Organizations | Location | People |
---|
article
Fused thiophene/quinoxaline low band gap polymers for photovoltaic's with increased photochemical stability
Abstract
We investigate a family of low band-gap polymers based on the common acceptor moiety 2,3-bis-(3-octyloxyphenyl)quinoxaline (Q) combined with thiophene (T) or the fused thiophene systems: benzo[2,1-b:3,4-b′]-dithiophene (BDT) or dithieno[3,2-b,2′,3′-d]-thiophene (DTT). The photochemical stability of the three polymers was examined and compared to P3HT. They were found to be substantially more robust than P3HT with a ranking of DTTQ>BDTQ>TQ1P3HT, indicating that the fused ring systems of DTT and BDT impart a large degree of photochemical stability than thiophene. Furthermore devices with normal and inverted geometry were prepared and tested in air. The normal geometry devices showed the highest efficiencies compared to the inverted, in particular owing to a higher Voc, with TQ1 being the most efficient with a power conversion efficiency (PCE) of 1.5% (1000 W m−2, AM1.5 G). For the inverted devices TQ1 and DTTQ showed the best PCEs of 0.9%.