People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Carlé, Jon Eggert
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2017Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch-to-Batch Variations for High-Throughput Energy Conversioncitations
- 2015Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cellscitations
- 2015Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cellscitations
- 2015Roll-to-Roll Printed Silver Nanowire Semitransparent Electrodes for Fully Ambient Solution-Processed Tandem Polymer Solar Cellscitations
- 2015Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodescitations
- 2015Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodescitations
- 2015Making Ends Meet: Flow Synthesis as the Answer to Reproducible High-Performance Conjugated Polymers on the Scale that Roll-to-Roll Processing Demandscitations
- 2014All-Solution-Processed, Ambient Method for ITO-Free, Roll-Coated Tandem Polymer Solar Cells using Solution- Processed Metal Filmscitations
- 2013Development of polymers for large scale roll-to-roll processing of polymer solar cells
- 2013A laboratory scale approach to polymer solar cells using one coating/printing machine, flexible substrates, no ITO, no vacuum and no spincoatingcitations
- 2012Rapid flash annealing of thermally reactive copolymers in a roll-to-roll process for polymer solar cellscitations
- 2011Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methodscitations
- 2011Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methodscitations
- 2011Fused thiophene/quinoxaline low band gap polymers for photovoltaic's with increased photochemical stabilitycitations
Places of action
Organizations | Location | People |
---|
article
Fused thiophene/quinoxaline low band gap polymers for photovoltaic's with increased photochemical stability
Abstract
We investigate a family of low band-gap polymers based on the common acceptor moiety 2,3-bis-(3-octyloxyphenyl)quinoxaline (Q) combined with thiophene (T) or the fused thiophene systems: benzo[2,1-b:3,4-b′]-dithiophene (BDT) or dithieno[3,2-b,2′,3′-d]-thiophene (DTT). The photochemical stability of the three polymers was examined and compared to P3HT. They were found to be substantially more robust than P3HT with a ranking of DTTQ>BDTQ>TQ1P3HT, indicating that the fused ring systems of DTT and BDT impart a large degree of photochemical stability than thiophene. Furthermore devices with normal and inverted geometry were prepared and tested in air. The normal geometry devices showed the highest efficiencies compared to the inverted, in particular owing to a higher Voc, with TQ1 being the most efficient with a power conversion efficiency (PCE) of 1.5% (1000 W m−2, AM1.5 G). For the inverted devices TQ1 and DTTQ showed the best PCEs of 0.9%.