People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Klimczuk, Tomasz
Gdańsk University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Cluster-spin-glass behavior in new ternary RE2PtGe3 compounds (RE = Tb, Dy, Ho)citations
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo$_2$Al$_9$
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo 2 Al 9 (M = Sr, Ba)citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics M Co 2 Al 9 ( M = Sr, Ba)citations
- 2020Synthesis of CoFe2O4 Nanoparticles: The Effect of Ionic Strength, Concentration, and Precursor Type on Morphology and Magnetic Propertiescitations
- 2018Rare earth ions doped K2Ta2O6 photocatalysts with enhanced UV-vis light activitycitations
- 2017Preparation and photocatalytic activity of Nd-modified TiO2 photocatalysts: insight into the excitation mechanism under visible lightcitations
- 2017Preparation and photocatalytic properties of BaZrO3 and SrZrO3 modified with Cu2O/Bi2O3 quantum dotscitations
- 2017The effects of bifunctional linker and reflux time on the surface properties and photocatalytic activity of CdTe quantum dots decorated KTaO3 composite photocatalystscitations
Places of action
Organizations | Location | People |
---|
article
Preparation and photocatalytic properties of BaZrO3 and SrZrO3 modified with Cu2O/Bi2O3 quantum dots
Abstract
In this study, we report a novel method of BaZrO3 and SrZrO3 surface modification by two different types of quantum dots (QDs, Cu2O and Bi2O3), which improved the photocatalytic performance of the obtained materials under UV-Vis light irradiation. Pristine BaZrO3 and SrZrO3 were prepared by the hydrothermal method. The deposition of Cu2O- and Bi2O3-QDs was carried out by chemical reduction. The morphology of the nanoparticles was estimated based on microscopic analysis (SEM, TEM). The perovskite structure and phase composition of polycrystals were confirmed by X-ray powder diffraction analysis (XRD). The elemental surface composition and the chemical character of detected elements were identified by X-ray photoelectron spectroscopy (XPS). The absorption ability and luminescence properties of nanocomposites were investigated by UV–Vis diffuse-reflectance spectroscopy (DRS UV-Vis) and luminescence spectroscopy. The influence of Cu2O/Bi2O3-QDs modification on the photocatalytic activity of BaZrO3 and SrZrO3 was evaluated by the phenol photodegradation process in the liquid phase under UV-Vis and toluene degradation in the gas phase under Vis irradiation. The highest photoactivity under UV-Vis light was observed for BaZrO3/1% Cu2O/33% Bi2O3 and SrZrO3/1% Cu2O/33% Bi2O3 samples. Research also demonstrated that single-type QD deposition (Cu2O or Bi2O3) on the zirconate surface decreases the photoactivity in comparison with pristine zirconates. The mechanism of photocatalytic activity of the obtained nanocomposites was investigated by the formation of hydroxyl radicals under UV-Vis irradiation in the presence of terephthalic acid.