People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abdelmoula, Mustapha
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2019Starch functionalized magnetite nanoparticles: New insight into the structural and magnetic propertiescitations
- 2019Starch functionalized magnetite nanoparticles: New insight into the structural and magnetic propertiescitations
- 2019Structure of single sheet iron oxides produced from surfactant interlayered green rustscitations
- 2018Abiotically or microbially mediated transformations of magnetite by sulphide species: The unforeseen role of nitrate-reducing bacteriacitations
- 2017Shale Of The Ivory Coast As A Filtration Material For Phosphate Removal From Waste Water
- 2017Biogenic Mineral Precipitation during Antimony bearing Ferrihydrite bioreduction
- 2012Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contaminationcitations
- 2010In situ oxidation of green rusts by deprotonation; wet corrosion and passivation of weathering steelscitations
- 2009Arsenite sequestration at the surface of nano-Fe(OH)2, ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefacienscitations
- 2009Arsenite sequestration at the surface of nano-Fe(OH)2, ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefacienscitations
- 2008Aluminium substitution in iron(II–III)-layered double hydroxides: Formation and cationic ordercitations
- 2008Comparative studies of ferric green rust and ferrihydrite coated sand: Role of synthesis routescitations
Places of action
Organizations | Location | People |
---|
article
Comparative studies of ferric green rust and ferrihydrite coated sand: Role of synthesis routes
Abstract
International audience ; A comparative study of ferrihydrite and ferric green rust coated sand prepared by three synthesis routes has been outlined in the present contribution. The two minerals displayed inverse properties in terms of quantity of deposited iron for all three methods investigated. For ferric green rust coating, a newly proposed synthesis route named as dry contact method was efficient for the maximum quantity of iron with almost full coverage area. Considering the similar parameters, the modified wet synthesis method designated as reactive method provides the optimum results for ferrihydrite coated sand. These coatings have been characterised by different surface analysis techniques. In particular, due to the excellent sensitivity of miniaturised Mössbauer Spectrometer (MIMOS) it was possible to detect the lowest iron content (0.1 Fe w/w%). A distinct approach based on tribology between crystallised ferric green rust and sand has been proposed to explain the relatively high quality of coating using dry contact method.