People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yang, Yang
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Effect of growth temperature on the microstructure and properties of epitaxial MoS2 monolayers grown by metalorganic chemical vapor depositioncitations
- 2024Hybrid Bonding Bottlebrush Polymers Grafted from a Supramolecular Polymer Backbonecitations
- 2024Unraveling the Mechanism of Alkali Metal Fluoride Post‐Treatment of SnO<sub>2</sub> for Efficient Planar Perovskite Solar Cellscitations
- 2024Oxygen-Mediated (0D) Cs4PbX6 Formation during Open-Air Thermal Processing Improves Inorganic Perovskite Solar Cell Performancecitations
- 2024Width-Dependent Growth of Atomically Thin Quantum Nanoribbons
- 2023Micromechanics of intra-laminar hybrid lamina with hollow fibres:
- 2023Micromechanics of intra-laminar hybrid lamina with hollow fibres::a RVE model
- 2022Origin of {112} < 111 > antitwinning in a Ti-24Nb-4Zr-8Sn superelastic single crystalcitations
- 2021Fully integrated flexible dielectric monitoring sensor system for real-time in situ prediction of the degree of cure and glass transition temperature of an epoxy resincitations
- 20213D printing for polymer/particle-based processing: A reviewcitations
- 2019Ultra-long-term reliable encapsulation using an atomic layer deposited Hfo2/Al2o3/Hfo2 triple-interlayer for biomedical implantscitations
- 2018High-performance p-type multicrystalline silicon (mc-Si)citations
- 2018Pitch measurements validation of a structural coloured steel insert using Scanning Confocal Microscopy (SCM) and Atomic Force Microscopy (AFM)
- 20183D multifunctional composites based on large-area stretchable circuit with thermoforming technologycitations
- 2017Ultrafast magnetization reversal by picosecond electrical pulsescitations
- 2017Arbitrarily shaped 2.5D circuits using stretchable interconnects embedded in thermoplastic polymerscitations
- 2017Influence of Fullerene Acceptor on the Performance, Microstructure, and Photophysics of Low Bandgap Polymer Solar Cellscitations
- 2017Enhancing Mechanical Properties of Nanocomposites Using Interconnected Carbon Nanotubes (<i>i</i>CNT) as Reinforcementcitations
- 2016One-time deformable thermoplastic devices based on flexible circuit board technologycitations
- 2016RTM Production Monitoring of the A380 Hinge Arm Droop Nose Mechanism: A Multi-Sensor Approachcitations
- 2016Deformation twinning in the full-α″ martensitic Ti–25Ta–20Nb shape memory alloycitations
- 2015Deformable microsystem for in situ cure degree monitoring of GFRP(Glass Fibre Reinforced Plastic)
- 2015Laser-based surface preparation of composite laminates leads to improved electrodes for electrical measurementscitations
- 2015Free-form 2.5D thermoplastic circuits using one-time stretchable interconnections
- 2014Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi-walled carbon nanotubescitations
- 2013Continued development of all-back-contact silicon wafer solar cells at ANUcitations
Places of action
Organizations | Location | People |
---|
article
High-performance p-type multicrystalline silicon (mc-Si)
Abstract
<p>Recent progress in the electronic quality of high-performance (HP) multicrystalline silicon material is reported with measurements and modeling performed at various institutions and research groups. It is shown that recent progress has been made in the fabrication at Trina Solar mainly by improving the high excess carrier lifetimes τ due to a considerable reduction of mid-gap states. However, the high lifetimes in the wafers are still reduced by interstitial iron by a factor of about 10 at maximum power point (mpp) conditions compared to mono-crystalline Cz wafers of equivalent resistivity. The low lifetime areas of the wafers seem to be limited by precipitates, most likely Cu. Through simulations, it appears that dislocations reduce cell efficiency by about 0.25% absolute. The best predictors for PERC cell efficiency from ingot metrology are a combination of mean lifetime and dislocation density because dislocations cannot be improved considerably by gettering during cell processing, while lifetime-limiting impurities are gettered well. In future, the material may limit cell efficiency above about 22.5% if the concentrations of Fe and Cu remain above 10<sup>10</sup> and 10<sup>13</sup> cm<sup>−3</sup>, respectively, and if dislocations are not reduced further.</p>