People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Langelaar, Matthijs
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023Holistic computational design within additive manufacturing through topology optimization combined with multiphysics multi-scale materials and process modellingcitations
- 2023Design for material properties of additively manufactured metals using topology optimizationcitations
- 2022Simultaneous topology and deposition direction optimization for Wire and Arc Additive Manufacturingcitations
- 2019A mold insert case study on topology optimized design for additive manufacturing
- 2019A mold insert case study on topology optimized design for additive manufacturing
- 2019Topology optimization of an injection mold insert with additive manufacturing constraints
- 2019Improving the manufacturability of metal AM parts
- 2018CPV solar cell modeling and metallization optimizationcitations
- 2016Optimizing front metallization patternscitations
- 2016Integrated front–rear-grid optimization of free-form solar cellscitations
- 2011Topology optimization of planar shape memory alloy thermal actuators using element connectivity parameterization
- 2008Modeling of shape memory alloy shells for design optimization
- 2008Sensitivity analysis of shape memory alloy shells
- 2007Gradient-based design optimization of shape memory alloy active catheters
- 2007Design optimization of shape memory alloy active structures using the R-phase transformation
- 2006Sensitivity Analysis and Optimization of a Shape Memory Alloy Gripper
- 2006Uncertainty-based Design Optimization of Shape Memory Alloy Microgripper using Combined Cycle-based Alternating Anti-optimization and Nested Parallel Computing
- 2006Sensitivity Analysis of Shape Memory Alloy Shells
- 2006Topology Optimization of Shape Memory Alloy Actuators using Element Connectivity Parametriztion
- 2005Analysis and Design Techniques for Shape Memory Alloy Microactuators for Space Applications
- 2005Topology Optimization of Shape Memory Alloy Actuators using Element Connectivity Parameterization
Places of action
Organizations | Location | People |
---|
article
CPV solar cell modeling and metallization optimization
Abstract
<p>Concentrated photovoltaics (CPV) has recently gained popularity due to its ability to deliver significantly more power at relatively lower absorber material costs. In CPVs, lenses and mirrors are used to concentrate illumination over a small solar cell, thereby increasing the incident light by several folds. This leads to non-uniform illumination and temperature distribution on the front side of the cell, which reduces performance. A way to limit this reduction is to optimize the metallization design of the solar cell for certain non-uniform illumination and temperature profiles. Most of the existing metallization optimization methods are restricted to the conventional H-pattern, which limits the achievable improvements. Topology optimization alleviates such restrictions and is capable of generating complex metallization patterns, which cannot be captured by the traditional optimization methods. In this paper, the application of topology optimization is explored for concentrated illumination conditions. A finite element model that includes all relevant resistances combined with topology optimization method is presented and the applicability is demonstrated on non-uniform illumination and temperature profiles. The finite element model allows accurate modeling of the current density and voltage distributions. Metallization designs obtained by topology optimization significantly improve the power output of concentrating solar cells.</p>