People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Flint, Tom
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023LaserbeamFoam: Laser Ray-Tracing and Thermally Induced State Transition Simulation Toolkitcitations
- 2021Magneto-hydrodynamics of multi-phase flows in heterogeneous systems with large property gradientscitations
- 2020Electron beam weld modelling of ferritic steel: effect of prior-austenite grain size on transformation kineticscitations
- 2020Effects of dilution on the hardness and residual stresses in multipass steel weldmentscitations
- 2019Characterisation and modelling of tempering during multi-pass weldingcitations
- 2019Phase-Field Simulation of Grain Boundary Evolution In Microstructures Containing Second-Phase Particles with Heterogeneous Thermal Propertiescitations
- 2019A Semi-Analytical Solution for the Transient Temperature Field Generated by a Volumetric Heat Source Developed for the Simulation of Friction Stir Weldingcitations
- 2018Prediction of grain boundary evolution in an titanium alloy substrate using a novel phase field model coupled with a semi-analytical thermal solution
Places of action
Organizations | Location | People |
---|
article
LaserbeamFoam: Laser Ray-Tracing and Thermally Induced State Transition Simulation Toolkit
Abstract
The application of high energy density photonic sources to the surface of metallic substrates causes localised topological evolution as the interface deforms due to hydrodynamic forces through fusion and vapourisation state transitions. Understanding how this laser energy is deposited, which may involve multiple reflection events, coupled with a thermal-fluid-dynamics framework capable of describing the heat and mass transfer in the system, permits accurate predictions of many important processes, including Laser Powder Bed Fusion, selective laser melting and laser welding among many others. In this work, we present laserbeamFoam: a multi-phase thermal-fluid-dynamics solver incorporating a ray-tracing algorithm and associated Fresnel equation implementation to determine the absorptivity of the discretised laser rays as a function of incidence angle through multiple reflections. laserbeamFoam is released under the GNU general public license with source code available on GitHub.